
MATLAB®

Data Import and Export

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Data Import and Export
© COPYRIGHT 2009–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2009 Online only New for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)

File Opening, Loading, and Saving
1

Supported File Formats for Import and Export 1-2

Methods for Importing Data . 1-7
Tools that Import Multiple File Formats 1-7
Importing Specific File Formats . 1-7
Importing Data with Low-Level I/O . 1-8

Import Images, Audio, and Video Interactively 1-9
Viewing the Contents of a File . 1-9
Specifying Variables . 1-10
Generating Reusable MATLAB Code 1-11

Import or Export a Sequence of Files 1-13

Save and Load Parts of Variables in MAT-Files 1-14
Save and Load Using the matfile Function 1-14
Load Parts of Variables Dynamically 1-16
Avoid Inadvertently Loading Entire Variables 1-17
Partial Loading and Saving Requires Version 7.3 MAT-

Files . 1-17

MAT-File Versions . 1-19
Overview of MAT-File Versions . 1-19
Save to Nondefault MAT-File Version 1-21
Data Compression . 1-21
Accelerate Save and Load Operations for Version 7.3 MAT-

Files . 1-22

Growing Arrays Using matfile Function 1-23

Unexpected Results When Loading Variables Within a
Function . 1-25

v

Contents

Create Temporary Files . 1-27

Text Files
2

Ways to Import Text Files . 2-2

Select Text File Data Using Import Tool 2-4
Select Data Interactively . 2-4
Import Data from Multiple Text Files 2-7

Import Dates and Times from Text Files 2-9

Import Numeric Data from Text Files 2-11
Import Comma-Separated Data . 2-11
Import Delimited Numeric Data . 2-12

Import Mixed Data from Text Files . 2-14

Import Large Text File Data in Blocks 2-18

Import Data from a Nonrectangular Text File 2-26

Write to Delimited Data Files . 2-28
Export Numeric Array to ASCII File 2-28
Export Table to Text File . 2-29
Export Cell Array to Text File . 2-31

Write to a Diary File . 2-34

Spreadsheets
3

Ways to Import Spreadsheets . 3-2
Import Data from Spreadsheets . 3-2
Paste Data from Clipboard . 3-3

vi Contents

Read Spreadsheet Data Using Import Tool 3-4
Select Data Interactively . 3-4
Import Data from Multiple Spreadsheets 3-6

Read Spreadsheet Data into Table . 3-7

Read Spreadsheet Data into Arrays . 3-10

Read All Worksheets from Spreadsheet File 3-13

System Requirements and Supported File Formats for
Spreadsheets . 3-16

Read Sequence of Spreadsheet Files 3-17
Get File Names . 3-17
Read One File At a Time . 3-18
Preview the Data from File . 3-18

Write Data to Excel Spreadsheets . 3-20
Write Tabular Data to Spreadsheet File 3-20
Write Numeric and Text Data to Spreadsheet File 3-21
Disable Warning When Adding New Worksheet 3-22
Format Cells in Excel Files . 3-22

Define Import Options for Tables . 3-23

Low-Level File I/O
4

Import Text Data Files with Low-Level I/O 4-2
Overview . 4-2
Reading Data in a Formatted Pattern 4-3
Reading Data Line-by-Line . 4-5
Testing for End of File (EOF) . 4-6
Opening Files with Different Character Encodings 4-9

Import Binary Data with Low-Level I/O 4-10
Low-Level Functions for Importing Data 4-10
Reading Binary Data in a File . 4-11
Reading Portions of a File . 4-13

vii

Reading Files Created on Other Systems 4-16
Opening Files with Different Character Encodings 4-16

Export to Text Data Files with Low-Level I/O 4-18
Write to Text Files Using fprintf . 4-18
Append To or Overwrite Existing Text Files 4-20
Open Files with Different Character Encodings 4-23

Export Binary Data with Low-Level I/O 4-24
Low-Level Functions for Exporting Data 4-24
Write Binary Data to a File . 4-24
Overwrite or Append to an Existing Binary File 4-25
Create a File for Use on a Different System 4-27
Open Files with Different Character Encodings 4-28
Write and Read Complex Numbers . 4-28

Images
5

Importing Images . 5-2
Getting Information about Image Files 5-2
Reading Image Data and Metadata from TIFF Files 5-3

Exporting to Images . 5-5
Exporting Image Data and Metadata to TIFF Files 5-5

Scientific Data
6

Import CDF Files Using Low-Level Functions 6-2

Represent CDF Time Values . 6-5

Import CDF Files Using High-Level Functions 6-6

Export to CDF Files . 6-10

viii Contents

Map NetCDF API Syntax to MATLAB Syntax 6-13

Import NetCDF Files and OPeNDAP Data 6-15
MATLAB NetCDF Capabilities . 6-15
Read from NetCDF File Using High-Level Functions 6-15
Find All Unlimited Dimensions in NetCDF File 6-18
Read from NetCDF File Using Low-Level Functions 6-19

Resolve Errors Reading OPeNDAP Data 6-23

Export to NetCDF Files . 6-24
MATLAB NetCDF Capabilities . 6-24
Create New NetCDF File From Existing File or Template . . 6-24
Merge Two NetCDF Files . 6-26
Write Data to NetCDF File Using Low-Level Functions 6-28

Importing Flexible Image Transport System (FITS) Files . . 6-31

Importing HDF5 Files . 6-33
Overview . 6-33
Using the High-Level HDF5 Functions to Import Data 6-33
Using the Low-Level HDF5 Functions to Import Data 6-40

Exporting to HDF5 Files . 6-41
Overview . 6-41
Using the MATLAB High-Level HDF5 Functions to Export

Data . 6-41
Using the MATLAB Low-Level HDF5 Functions to Export

Data . 6-42

Working with Non-ASCII Characters in HDF5 Files 6-50
Create Dataset and Attribute Names Containing Non-ASCII

Characters . 6-50
Create Variable-Length String Data Containing Non-ASCII

Characters . 6-51

Import HDF4 Files Programatically . 6-54
Overview . 6-54
Using the MATLAB HDF4 High-Level Functions 6-54

Map HDF4 to MATLAB Syntax . 6-58

Import HDF4 Files Using Low-Level Functions 6-60

ix

Import HDF4 Files Interactively . 6-64
Step 1: Opening an HDF4 File in the HDF Import Tool 6-64
Step 2: Selecting a Data Set in an HDF File 6-65
Step 3: Specifying a Subset of the Data (Optional) 6-66
Step 4: Importing Data and Metadata 6-67
Step 5: Closing HDF Files and the HDF Import Tool 6-68
Using the HDF Import Tool Subsetting Options 6-68

About HDF4 and HDF-EOS . 6-80

Export to HDF4 Files . 6-81
Write MATLAB Data to HDF4 File . 6-81
Manage HDF4 Identifiers . 6-83

Audio and Video
7

Read and Write Audio Files . 7-2

Record and Play Audio . 7-5
Record Audio . 7-5
Play Audio . 7-7
Record or Play Audio within a Function 7-8

Get Information about Video Files . 7-10

Read Video Files . 7-11
Read All Frames in Video File . 7-11
Read All Frames Beginning at Specified Time 7-12
Read Video Frames Within Specified Time Interval 7-13
Troubleshooting . 7-14

Supported Video File Formats . 7-16
What Are Video Files? . 7-16
Formats That VideoReader Supports 7-16
View Codec Associated with Video File 7-17
Troubleshooting: Errors Reading Video File 7-18

Convert Between Image Sequences and Video 7-19

x Contents

Export to Video . 7-23

Characteristics of Audio Files . 7-25

XML Documents
8

Importing XML Documents . 8-2
What Is an XML Document Object Model (DOM)? 8-2
Example — Finding Text in an XML File 8-3

Exporting to XML Documents . 8-6
Creating an XML File . 8-6
Updating an Existing XML File . 8-8

Memory-Mapping Data Files
9

Overview of Memory-Mapping . 9-2
What Is Memory-Mapping? . 9-2
Benefits of Memory-Mapping . 9-2
When to Use Memory-Mapping . 9-4
Maximum Size of a Memory Map . 9-5
Byte Ordering . 9-5

Map File to Memory . 9-6
Create a Simple Memory Map . 9-6
Specify Format of Your Mapped Data 9-7
Map Multiple Data Types and Arrays 9-8
Select File to Map . 9-10

Read from Mapped File . 9-12

Write to Mapped File . 9-18
Write to Memory Mapped as Numeric Array 9-18
Write to Memory Mapped as Scalar Structure 9-19
Write to Memory Mapped as Nonscalar Structure 9-20

xi

Syntaxes for Writing to Mapped File 9-21
Work with Copies of Your Mapped Data 9-22

Delete Memory Map . 9-25
Ways to Delete a Memory Map . 9-25
The Effect of Shared Data Copies On Performance 9-25

Share Memory Between Applications 9-26

Internet File Access
10

Proxy Server Support . 10-2

MATLAB and Web Services Security 10-3
MATLAB Does Not Verify Certificate Chains 10-3

Download Data from Web Service . 10-4

Convert Data from Web Service . 10-7

Download Web Page and Files . 10-10
Example — Use the webread Function 10-10
Example — Use the websave Function 10-11

Call Web Services from Functions . 10-12
Error Messages Concerning Web Service Options 10-13

Send Email . 10-14

Perform FTP File Operations . 10-16
Example — Retrieve a File from an FTP Server 10-16

Display Hyperlinks in the Command Window 10-18
Create Hyperlinks to Web Pages . 10-18
Transfer Files Using FTP . 10-18

xii Contents

Large Data
11

Getting Started with MapReduce . 11-3
What Is MapReduce? . 11-3
MapReduce Algorithm Phases . 11-4
Example MapReduce Calculation . 11-5

Write a Map Function . 11-11
Role of Map Function in MapReduce 11-11
Requirements for Map Function . 11-12
Sample Map Functions . 11-13

Write a Reduce Function . 11-16
Role of the Reduce Function in MapReduce 11-16
Requirements for Reduce Function 11-17
Sample Reduce Functions . 11-18

Speed Up and Deploy MapReduce Using Other Products . 11-22
Execution Environment . 11-22
Running in Parallel . 11-22
Application Deployment . 11-22

Build Effective Algorithms with MapReduce 11-24

Debug MapReduce Algorithms . 11-27
Set Breakpoint . 11-27
Execute mapreduce . 11-28
Step Through Map Function . 11-28
Step Through Reduce Function . 11-30

Find Maximum Value with MapReduce 11-34

Compute Mean Value with MapReduce 11-38

Compute Mean by Group Using MapReduce 11-42

Create Histograms Using MapReduce 11-47

Simple Data Subsetting Using MapReduce 11-56

xiii

Using MapReduce to Compute Covariance and Related
Quantities . 11-65

Compute Summary Statistics by Group Using
MapReduce . 11-71

Using MapReduce to Fit a Logistic Regression Model 11-79

Tall Skinny QR (TSQR) Matrix Factorization Using
MapReduce . 11-86

Compute Maximum Average HSV of Images with
MapReduce . 11-92

Getting Started with Datastore . 11-99
What Is a Datastore? . 11-99
Create and Read from a Datastore 11-100

Read Remote Data . 11-104
Amazon S3 . 11-104
Windows Azure Blob Storage . 11-105
HDFS . 11-107

Read and Analyze Large Tabular Text File 11-109

Read and Analyze Image Files . 11-112

Read and Analyze MAT-File with Key-Value Data 11-117

Read and Analyze Hadoop Sequence File 11-121

Develop Custom Datastore . 11-123
Overview . 11-123
Implement Datastore for Serial Processing 11-124
Add Support for Parallel Processing 11-126
Add Support for Hadoop . 11-127
Validate Custom Datastore . 11-128

Testing Guidelines for Custom Datastores 11-130
Unit Tests . 11-130
Workflow Tests . 11-138
Next Steps . 11-140

xiv Contents

Tall Arrays . 11-141
What is a Tall Array? . 11-141
Benefits of Tall Arrays . 11-141
Creating Tall Tables . 11-141
Creating Tall Timetables . 11-143
Creating Tall Arrays . 11-143
Deferred Evaluation . 11-144
Evaluation with gather . 11-145
Saving, Loading, and Checkpointing Tall Arrays 11-147
Toolbox Capabilities . 11-147

Functions That Support Tall Arrays (A–Z) 11-149
Statistics and Machine Learning Toolbox Functions 11-169

Deferred Evaluation of Tall Arrays 11-170
Display of Unevaluated Tall Arrays 11-170
Evaluation with gather . 11-171
Resolve Errors with gather . 11-172
Example: Calculate Size of Tall Array 11-172
Example: Multipass Calculations with Tall Arrays 11-173
Summary of Behavior and Recommendations 11-175

Index and View Tall Array Elements 11-176
Extract Top Rows of Array . 11-176
Extract Bottom Rows of Array . 11-177
Indexing Tall Arrays . 11-177
Extract Tall Table Variables . 11-180
Assignment and Deletion with Tall Arrays 11-182
Extract Specified Number of Rows in Sorted Order 11-182
Summarize Tall Array Contents . 11-183
Return Subset of Calculation Results 11-185

Histograms of Tall Arrays . 11-186

Visualization of Tall Arrays . 11-193
Tall Array Plotting Examples . 11-194

Grouped Statistics Calculations with Tall Arrays 11-202

Extend Tall Arrays with Other Products 11-207
Statistics and Machine Learning . 11-207
Control Where Your Code Runs . 11-207
Work with Databases . 11-208

xv

TCP/IP Support in MATLAB
12

TCP/IP Communication Overview . 12-2

Create a TCP/IP Connection . 12-3

Configure Properties for TCP/IP Communication 12-6

Write and Read Data over TCP/IP Interface 12-9
Write Data . 12-9
Read Data . 12-9
Acquire Data from a Weather Station Server 12-10
Read and Write uint8 Data . 12-11

xvi Contents

File Opening, Loading, and Saving

• “Supported File Formats for Import and Export” on page 1-2
• “Methods for Importing Data” on page 1-7
• “Import Images, Audio, and Video Interactively” on page 1-9
• “Import or Export a Sequence of Files” on page 1-13
• “Save and Load Parts of Variables in MAT-Files” on page 1-14
• “MAT-File Versions” on page 1-19
• “Growing Arrays Using matfile Function” on page 1-23
• “Unexpected Results When Loading Variables Within a Function” on page 1-25
• “Create Temporary Files” on page 1-27

1

Supported File Formats for Import and Export
The following table shows the file formats that you can import and export from the
MATLAB application.

In addition to the functions in the table, you also can use the importdata function, or
import these file formats interactively, with the following exceptions:

• importdata and interactive import do not support H5 and netCDF files.
• importdata does not support HDF files.

File Content Extension Description Import Function Export Function
MATLAB formatted
data

MAT Saved MATLAB
workspace

load save

Partial access of variables
in MATLAB workspace

matfile matfile

Text any, including:
CSV
TXT

Comma delimited
numbers

csvread csvwrite

Delimited numbers dlmread dlmwrite
Delimited numbers, or a
mix of text and numbers

textscan none

Column-oriented
delimited numbers or a
mix of text and numbers

readtable writetable

Spreadsheet XLS
XLSX
XLSM

XLSB
(Systems with
Microsoft®
Excel® for
Windows®
only)

XLTM (import
only)

Worksheet or range of
spreadsheet

xlsread xlswrite

1 File Opening, Loading, and Saving

1-2

File Content Extension Description Import Function Export Function
XLTX (import
only)

ODS (Systems
with Microsoft
Excel for
Windows only)

Column-oriented data in
worksheet or range of
spreadsheet

readtable writetable

Extensible Markup
Language

XML XML-formatted text xmlread xmlwrite

Data Acquisition
Toolbox™ file

DAQ Data Acquisition Toolbox daqread none

Scientific data CDF Common Data Format See “Common
Data Format”

See cdflib

FITS Flexible Image Transport
System

See “FITS Files” See “FITS Files”

HDF Hierarchical Data
Format, version 4, or
HDF-EOS v. 2

See “HDF4
Files”

See “HDF4
Files”

H5 HDF or HDF-EOS,
version 5

See “HDF5
Files”

See “HDF5
Files”

NC Network Common Data
Form (netCDF)

See “NetCDF
Files”

See “NetCDF
Files”

Image BMP Windows Bitmap imread imwrite
GIF Graphics Interchange

Format
HDF Hierarchical Data

Format
JPEG
JPG

Joint Photographic
Experts Group

JP2
JPF
JPX
J2C
J2K

JPEG 2000

 Supported File Formats for Import and Export

1-3

File Content Extension Description Import Function Export Function
PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network

Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun™ Raster
TIFF
TIF

Tagged Image File
Format

XWD X Window Dump
CUR Windows Cursor

resources
imread none

ICO Windows Icon resources
Audio (all platforms) AU

SND
NeXT/Sun sound audioread audiowrite

AIFF Audio Interchange File
Format

AIFC Audio Interchange File
Format, with
compression codecs

FLAC Free Lossless Audio
Codec

OGG Ogg Vorbis
WAV Microsoft WAVE sound

Audio (Windows) M4A
MP4

MPEG-4 audioread audiowrite

any Formats supported by
Microsoft Media
Foundation

audioread none

1 File Opening, Loading, and Saving

1-4

File Content Extension Description Import Function Export Function
Audio (Mac) M4A

MP4
MPEG-4 audioread audiowrite

Audio (Linux®) any Formats supported by
GStreamer

audioread none

Video (all platforms) AVI Audio Video Interleave VideoReader VideoWriter
MJ2 Motion JPEG 2000

Video (Windows) MPG MPEG-1 VideoReader none
ASF
ASX
WMV

Windows Media®

any Formats supported by
Microsoft DirectShow®

Video (Windows 7 or
later)

MP4
M4V

MPEG-4 VideoReader VideoWriter

MOV QuickTime VideoReader none
any Formats supported by

Microsoft Media
Foundation

Video (Mac) MP4
M4V

MPEG-4 VideoReader VideoWriter

MPG MPEG-1 VideoReader none
MOV QuickTime
any Formats supported by

QuickTime, including .
3gp, .3g2, and .dv

Video (Linux) any Formats supported by
your installed GStreamer
plug-ins, including .ogg

VideoReader none

You can use web services such as a RESTful or WSDL to read and write data in an
internet media type format such as JSON, XML, image, or text. For more information,
see:

 Supported File Formats for Import and Export

1-5

• “Web Access”
• “WSDL (Web Services Description Language)”

1 File Opening, Loading, and Saving

1-6

Methods for Importing Data
In this section...
“Tools that Import Multiple File Formats” on page 1-7
“Importing Specific File Formats” on page 1-7
“Importing Data with Low-Level I/O” on page 1-8

Caution When you import data into the MATLAB workspace, the new variables you
create overwrite any existing variables in the workspace that have the same name.

Tools that Import Multiple File Formats

You can import data into MATLAB from a disk file or the system clipboard interactively.

To import data from a file, do one of the following:

•
On the Home tab, in the Variable section, select Import Data .

• Double-click a file name in the Current Folder browser.
• Call uiimport.

To import data from the clipboard, do one of the following:

• On the Workspace browser title bar, click , and then select Paste.
• Call uiimport.

To import without invoking a graphical user interface, the easiest option is to use the
importdata function.

For a complete list of the formats you can import interactively or with importdata, see
“Supported File Formats for Import and Export” on page 1-2.

Importing Specific File Formats

MATLAB includes functions tailored to import specific file formats. Consider using
format-specific functions instead of importing data interactively when you want to import

 Methods for Importing Data

1-7

only a portion of a file. Many of the format-specific functions provide options for selecting
ranges or portions of data. Some format-specific functions allow you to request multiple
optional outputs. This option is not available when you import interactively.

For a complete list of the format-specific functions, see “Supported File Formats for
Import and Export” on page 1-2.

For binary data files, consider “Overview of Memory-Mapping” on page 9-2. Memory-
mapping enables you to access file data using standard MATLAB indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations. For example,
use Database Toolbox™ software for importing data from relational databases. Refer to
the documentation on specific toolboxes to see the available import features.

Importing Data with Low-Level I/O

If the Import Wizard, importdata, and format-specific functions cannot read your data,
use low-level I/O functions such as fscanf or fread. Low-level functions allow the most
control over reading from a file, but require detailed knowledge of the structure of your
data. For more information, see:

• “Import Text Data Files with Low-Level I/O” on page 4-2
• “Import Binary Data with Low-Level I/O” on page 4-10

1 File Opening, Loading, and Saving

1-8

Import Images, Audio, and Video Interactively

In this section...
“Viewing the Contents of a File” on page 1-9
“Specifying Variables” on page 1-10
“Generating Reusable MATLAB Code” on page 1-11

Note For information on importing text files, see “Select Text File Data Using Import
Tool” on page 2-4. For information on importing spreadsheets, see “Read Spreadsheet
Data Using Import Tool” on page 3-4. For information on importing HDF4 files, see
“Import HDF4 Files Interactively” on page 6-64.

Viewing the Contents of a File

Start the Import Wizard by selecting Import Data or calling uiimport.

To view images or video, or to listen to audio, click the Back button on the first window
that the Import Wizard displays.

The right pane of the new window includes a preview tab. Click the button in the preview
tab to show an image or to play audio or video.

 Import Images, Audio, and Video Interactively

1-9

Specifying Variables

The Import Wizard generates default variable names based on the format and content of
your data. You can change the variables in any of the following ways:

• “Renaming or Deselecting Variables” on page 1-10
• “Importing to a Structure Array” on page 1-11

The default variable name for data imported from the system clipboard is
A_pastespecial.

If the Import Wizard detects a single variable in a file, the default variable name is the
file name. Otherwise, the Import Wizard uses default variable names that correspond to
the output fields of the importdata function. For more information on the output fields,
see the importdata function reference page.

Renaming or Deselecting Variables

To override the default variable name, select the name and type a new one.

To avoid importing a particular variable, clear the check box in the Import column.

1 File Opening, Loading, and Saving

1-10

Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start
the Import Wizard by calling uiimport with an output argument. For example, the
sample file durer.mat contains three variables: X, caption, and map. If you issue the
command

durerStruct = uiimport('durer.mat')

and click the Finish button, the Import Wizard returns a scalar structure with three
fields:

durerStruct =
 X: [648x509 double]
 map: [128x3 double]
 caption: [2x28 char]

To access a particular field, use dot notation. For example, view the caption field:

disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Access Data in a Structure Array”.

Generating Reusable MATLAB Code

To create a function that reads similar files without restarting the Import Wizard, select
the Generate MATLAB code check box. When you click Finish to complete the initial
import operation, MATLAB opens an Editor window that contains an unsaved function.
The default function name is importfile.m or importfileN.m, where N is an integer.

The function in the generated code includes the following features:

• For text files, if you request vectors from rows or columns, the generated code also
returns vectors.

• When importing from files, the function includes an input argument for the name of
the file to import, fileToRead1.

 Import Images, Audio, and Video Interactively

1-11

• When importing into a structure array, the function includes an output argument for
the name of the structure, newData1.

However, the generated code has the following limitations:

• If you rename or deselect any variables in the Import Wizard, the generated code does
not reflect those changes.

• If you do not import into a structure array, the generated function creates variables in
the base workspace. If you plan to call the generated function from within your own
function, your function cannot access these variables. To allow your function to access
the data, start the Import Wizard by calling uiimport with an output argument. Call
the generated function with an output argument to create a structure array in the
workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best
results, use the function name with a .m extension for the file name.

1 File Opening, Loading, and Saving

1-12

Import or Export a Sequence of Files
To import or export multiple files, create a control loop to process one file at a time.
When constructing the loop:

• To build sequential file names, use sprintf.
• To find files that match a pattern, use dir.
• Use function syntax to pass the name of the file to the import or export function. (For

more information, see “Command vs. Function Syntax”.)

For example, to read files named file1.txt through file20.txt with importdata:

numfiles = 20;
mydata = cell(1, numfiles);

for k = 1:numfiles
 myfilename = sprintf('file%d.txt', k);
 mydata{k} = importdata(myfilename);
end

To read all files that match *.jpg with imread:

jpegFiles = dir('*.jpg');
numfiles = length(jpegFiles);
mydata = cell(1, numfiles);

for k = 1:numfiles
 mydata{k} = imread(jpegFiles(k).name);
end

 Import or Export a Sequence of Files

1-13

Save and Load Parts of Variables in MAT-Files

In this section...
“Save and Load Using the matfile Function” on page 1-14
“Load Parts of Variables Dynamically” on page 1-16
“Avoid Inadvertently Loading Entire Variables” on page 1-17
“Partial Loading and Saving Requires Version 7.3 MAT-Files” on page 1-17

You can save and load parts of variables directly in MAT-files without loading them into
memory using the matfile function. The primary advantage of using the matfile
function over the load or save functions is that you can process parts of very large data
sets that are otherwise too large to fit in memory. When working with these large
variables, read and write as much data into memory as possible at a time. Otherwise,
repeated file access can negatively impact the performance of your code.

Save and Load Using the matfile Function

This example shows how to load, modify, and save part of a variable in an existing MAT-
file using the matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.

A = rand(5);
B = magic(10);
save example.mat A B -v7.3;
clear A B

Construct a MatFile object from the MAT-file, example.mat. The matfile function
creates a MatFile object that corresponds to the MAT-file and contains the properties of
the MatFile object. By default, matfile only permits loading from existing MAT-files.

exampleObject = matfile('example.mat');

To enable saving, call matfile with the Writable parameter.

exampleObject = matfile('example.mat','Writable',true);

Alternatively, construct the object and set Properties.Writable in separate steps.

1 File Opening, Loading, and Saving

1-14

exampleObject = matfile('example.mat');
exampleObject.Properties.Writable = true;

Load the first row of B from example.mat into variable firstRowB and modify the data.
When you index into objects associated with Version 7.3 MAT-files, MATLAB® loads
only the part of the variable that you specify.

firstRowB = exampleObject.B(1,:);
firstRowB = 2 * firstRowB;

Update the values in the first row of variable B in example.mat using the values stored
in firstRowB.

exampleObject.B(1,:) = firstRowB;

For very large files, the best practice is to read and write as much data into memory as
possible at a time. Otherwise, repeated file access negatively impacts the performance of
your code. For example, suppose that your file contains many rows and columns, and
that loading a single row requires most of the available memory. Rather than updating
one element at a time, update each row.

[nrowsB,ncolsB] = size(exampleObject,'B');
for row = 1:nrowsB
 exampleObject.B(row,:) = row * exampleObject.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable at a time.

exampleObject.B = 10 * exampleObject.B;

Alternatively, update a variable by calling the save function with the -append option.
The -append option requests that the save function replace only the specified variable,
B, and leave other variables in the file intact. This method always requires that you load
and save the entire variable.

load('example.mat','B');
B(1,:) = 2 * B(1,:);
save('example.mat','-append','B');

Add a variable to the file using the matlab.io.MatFile object.

exampleObject.C = magic(8);

You also can add the variable by calling the save function with the -append option.

 Save and Load Parts of Variables in MAT-Files

1-15

C = magic(8);
save('example.mat','-append','C');
clear C

Load Parts of Variables Dynamically

This example shows how to access parts of variables from a MAT-file dynamically. This is
useful when working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography.mat, that contains one or more arrays
with unknown names. Construct a MatFile object that corresponds to the file,
topography.mat. Call who to get the variable names in the file.

exampleObject = matfile('topography.mat');
varlist = who(exampleObject)

varlist = 4x1 cell array
 {'topo' }
 {'topolegend'}
 {'topomap1' }
 {'topomap2' }

varlist is a cell array containing the names of the four variables in topography.mat.

The third and fourth variables, topomap1 and topomap2, are both arrays containing
topography data. Load the elevation data from the third column of each variable into a
field of the structure array, S. For each field, specify a field name that is the original
variable name prefixed by elevationOf_. Then, access the data in each variable as
properties of exampleObject. Because varName is a variable, enclose it in parentheses.

for index = 3:4
 varName = varlist{index};
 S(1).(['elevationOf_',varName]) = exampleObject.(varName)(:,3);
end

View the contents of the structure array, S.

S

S = struct with fields:
 elevationOf_topomap1: [64x1 double]

1 File Opening, Loading, and Saving

1-16

 elevationOf_topomap2: [128x1 double]

S has two fields, elevationOf_topomap1 and elevationOf_topomap2, each
containing a column vector.

Avoid Inadvertently Loading Entire Variables

When you do not know the size of a large variable in a MAT-file and want to load only
parts of that variable at a time, avoid using the end keyword. Using the end keyword
temporarily loads the entire contents of the variable in question into memory. For very
large variables, loading takes a long time or generates Out of Memory errors. Instead,
call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:

lastColB = exampleObject.B(:,end);

Use this code instead to improve performance:

[nrows,ncols] = size(exampleObject,'B');
lastColB = exampleObject.B(:,ncols);

Similarly, any time you refer to a variable with syntax of the form matObj.varName,
such as exampleObject.B, MATLAB temporarily loads the entire variable into
memory. Therefore, make sure to call the size method for MatFile objects with syntax
such as:

[nrows,ncols] = size(exampleObject,'B');

rather than passing the entire contents of exampleObject.B to the size function,

[nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files

Any load or save operation that uses a MatFile object associated with a Version 7 or
earlier MAT-file temporarily loads the entire variable into memory.

 Save and Load Parts of Variables in MAT-Files

1-17

Use the matfile function to create files in Version 7.3 format. For example, this code

newfile = matfile('newfile.mat');

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert existing
MAT-files to Version 7.3 by calling the save function with the -v7.3 option, such as:

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format, access the
Environment section on the Home tab, and click Preferences. Select MATLAB >
General > MAT-Files.

See Also
load | matfile | save

More About
• “Save and Load Workspace Variables”
• “Growing Arrays Using matfile Function” on page 1-23
• “MAT-File Versions” on page 1-19

1 File Opening, Loading, and Saving

1-18

MAT-File Versions
In this section...
“Overview of MAT-File Versions” on page 1-19
“Save to Nondefault MAT-File Version” on page 1-21
“Data Compression” on page 1-21
“Accelerate Save and Load Operations for Version 7.3 MAT-Files” on page 1-22

Overview of MAT-File Versions

MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-
file Version 4, there are several subsequent versions of MAT-files that support an
increasing set of features. MATLAB releases R2006b and later all support all MAT-file
versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is
when you create new MAT-files using the matfile function. In this case, the default
MAT-file version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences:

• On the Home tab, in the Environment section, click Preferences.
• Select MATLAB > General > MAT-Files.

The preferences apply to both the save function and the Save menu options.

The maximum size of a MAT-file is imposed only by your native file system.

This table lists and compares all MAT-file versions.

 MAT-File Versions

1-19

MAT-File
Version

Supporte
d
MATLAB
Releases

Supported Features Compressi
on

Maximum
Size of
Each
Variable

Value of
version
argument in
save
function

Preference
Option

Version
7.3

R2006b
(Version
7.3) or
later

Saving and loading
parts of variables,
and all Version 7
features

Yes ≥ 2 GB on
64-bit
computers

'-v7.3' MATLAB
Version
7.3 or
later
(save -
v7.3)

Version 7 R14
(Version
7.0) or
later

Unicode®
character encoding,
which enables file
sharing between
systems that use
different default
character encoding
schemes, and all
Version 6 features.

Yes 2^31 bytes
per
variable

'-v7' MATLAB
Version 7
or later
(save -v7)

Version 6 R8
(Version
5) or
later

N-dimensional
arrays, cell arrays,
structure arrays,
variable names
longer than 19
characters, and all
Version 4 features.

No 2^31 bytes
per
variable

'-v6' MATLAB
Version 5
or later
(save -v6)

Version 4 All Two-dimensional
double, character,
and sparse arrays

No 100,000,00
0 elements
per array,
and 2^31
bytes per
variable

'-v4' n/a

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead
storage to describe the contents of the file. For cell arrays, structure arrays, or other

1 File Opening, Loading, and Saving

1-20

containers that can store heterogeneous data types, Version 7.3 MAT-files are sometimes
larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version

Save to a MAT-file version other than the default version when you want to:

• Allow access to the file using earlier versions of MATLAB.
• Take advantage of Version 7.3 MAT-file features.
• Reduce the time required to load and save some files by storing uncompressed data.
• Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the
last input to the save function. For example, to create a Version 6 MAT-file named
myfile.mat, type:

save('myfile.mat','-v6')

Data Compression

Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save
storage space. Data compression and decompression slow down all save operations and
some load operations. In most cases, the reduction in file size is worth the additional time
spent.

In some cases, loading compressed data actually can be faster than loading uncompressed
data. For example, consider a block of data in a numeric array saved to both a 10 MB
compressed file and a 100 MB uncompressed file. Loading the first 10 MB takes the same
amount of time for each file. Loading the remaining 90 MB from the uncompressed file
takes nine times as long as loading the first 10 MB. Completing the load of the
compressed file requires only the relatively short time to decompress the data.

The benefits of data compression are negligible in the following cases:

• The amount of data in each item is small relative to the complexity of its container.
For example, simple numeric arrays take less time to compress and uncompress than
cell or structure arrays of the same size. Compressing arrays that result in an
uncompressed file size of less than 3 MB offers limited benefit, unless you are
transferring data over a network.

 MAT-File Versions

1-21

• The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MAT-Files

Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks.
The time required to load part of a variable from a Version 7.3 MAT-file depends on how
that data is stored across one or more chunks. Each chunk that contains any portion of
the data you want to load must be fully uncompressed to access the data. Rechunking
your data can improve the performance of the load operation. To rechunk data, use the
HDF5 command-line tools, which are part of the HDF5 distribution.

See Also
matfile | save

More About
• “Save and Load Workspace Variables”

1 File Opening, Loading, and Saving

1-22

Growing Arrays Using matfile Function
When writing a large number of large values to a MAT-file, the size of the file increases
in a nonincremental way. This method of increase is expected. To minimize the number
of times the file must grow and ensure optimal performance though, assign initial values
to the array prior to populating it with data.

For example, suppose that you have a writable MatFile object.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million values, fifty
thousand at a time. The values should have a mean of 123.4, and a standard deviation of
56.7.
size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to populating it with
data.
matObj.data(1,size) = 0;

View the size of the file.

• On Windows systems, use dir.

system('dir matFileOfDoubles.mat');
• On UNIX® systems, use ls -ls:

system('ls -ls matFileOfDoubles.mat');

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value
to the last element of the array does not create a large file. It does, however, prepare your
system for the potentially large size increase of matFileOfDoubles.mat.

Write data to the array, one chunk at a time.
nout = 0;
while(nout < size)

 Growing Arrays Using matfile Function

1-23

 fprintf('Writing %d of %d\n',nout,size);
 chunkSize = min(chunk,size-nout);
 data = mean + std * randn(1,chunkSize);
 matObj.data(1,(nout+1):(nout+chunkSize)) = data;
 nout = nout + chunkSize;
end

View the size of the file.

system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also
matfile

More About
• “Save and Load Parts of Variables in MAT-Files” on page 1-14

1 File Opening, Loading, and Saving

1-24

Unexpected Results When Loading Variables Within a Function
If you have a function that loads data from a MAT-file and find that MATLAB does not
return the expected results, check whether any variables in the MAT-file share the same
name as a MATLAB function. Common variable names that conflict with function names
include i, j, mode, char, size, and path.

These unexpected results occur because when you execute a function, MATLAB
preprocesses all the code in the function before running it. However, calls to load are not
preprocessed, meaning MATLAB has no knowledge of the variables in your MAT-file.
Variables that share the same name as MATLAB functions are, therefore, preprocessed
as MATLAB functions, causing the unexpected results. This is different from scripts,
which MATLAB preprocesses and executes line by line, similar to the Command
Window.

For example, consider a MAT-file with variables height, width, and length. If you load
these variables in a function such as findVolume, MATLAB interprets the reference to
length as a call to the MATLAB length function, and returns an error.

function vol = findVolume(myfile)
 load(myfile);
 vol = height * width * length;
end

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of these
approaches:

• Load the variables into a structure array. For example:
function vol = findVolume(myfile)
 dims = load(myfile);
 vol = dims.height * dims.width * dims.length;
end

• Explicitly include the names of variables in the call to the load function. For
example:
function vol = findVolume(myfile)
 load(myfile,'height','width','length')
 vol = height * width * length;
end

 Unexpected Results When Loading Variables Within a Function

1-25

• Initialize the variables within the function before calling load. To initialize a
variable, assign it to an empty matrix or an empty character vector. For example:

function vol = findVolume(myfile)
 height = [];
 width = [];
 length = [];
 load(myfile);
 vol = height * width * length;

To determine whether a particular variable name is associated with a MATLAB function,
use the exist function. A return value of 5 determines that the name is a built-in
MATLAB function.

See Also
load

More About
• “Save and Load Workspace Variables”

1 File Opening, Loading, and Saving

1-26

Create Temporary Files
Use the tempdir function to return the name of the folder designated to hold temporary
files on your system. For example, issuing tempdir on The Open Group UNIX systems
returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned
file name is a suitable destination for temporary data. For example, if you need to store
some data in a temporary file, then you might issue the following command first:

fileID = fopen(tempname,'w');

In most cases, tempname generates a universally unique identifier (UUID). However, if
you run MATLAB without JVM™, then tempname generates a random name using the
CPU counter and time, and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems,
designating a file as temporary means only that the file is not backed up.

 Create Temporary Files

1-27

Text Files

• “Ways to Import Text Files” on page 2-2
• “Select Text File Data Using Import Tool” on page 2-4
• “Import Dates and Times from Text Files” on page 2-9
• “Import Numeric Data from Text Files” on page 2-11
• “Import Mixed Data from Text Files” on page 2-14
• “Import Large Text File Data in Blocks” on page 2-18
• “Import Data from a Nonrectangular Text File” on page 2-26
• “Write to Delimited Data Files” on page 2-28
• “Write to a Diary File” on page 2-34

2

Ways to Import Text Files
You can import text files into MATLAB both interactively and programmatically.

To import data interactively, use the Import Tool. You can generate code to repeat the
operation on multiple similar files. The Import Tool supports text files, including those
with the extensions .txt, .dat, .csv, .asc, .tab, and .dlm. These text files can be
nonrectangular, and can have row and column headers, as shown in the following figure.
Data in these files can be a combination of numeric and nonnumeric text, and can be
delimited by one or more characters.

To import data from text files programmatically, use an import function. Most of the
import functions for text files require that each row of data has the same number of
columns, and they allow you to specify a range of data to import.

This table compares the primary import options for text files.
Import Option Description For Examples, See...
Import Tool Import a file or range of

data to column vectors, a
matrix, a cell array, or a
table. You can generate code
to repeat the operation on
multiple similar files.

“Select Text File Data Using
Import Tool” on page 2-4

readtable Import column-oriented
data into a table.

“Import Mixed Data from
Text Files” on page 2-14

“Define Import Options for
Tables” on page 3-23

2 Text Files

2-2

Import Option Description For Examples, See...
csvread Import a file or range of

comma-separated numeric
data to a matrix.

“Import Comma-Separated
Data” on page 2-11

dlmread Import a file or a range of
numeric data separated by
any single delimiter to a
matrix.

“Import Delimited Numeric
Data” on page 2-12

TabularTextDatastore
with read or readall
functions

Import one or more column-
oriented text files. Each file
can be very large and does
not need to fit in memory.

“Read and Analyze Large
Tabular Text File” on page
11-109

textscan Import a nonrectangular or
arbitrarily formatted text
file to a cell array.

“Import Data from a
Nonrectangular Text File”
on page 2-26

For information on importing files with more complex formats, see “Import Text Data
Files with Low-Level I/O” on page 4-2.

 Ways to Import Text Files

2-3

Select Text File Data Using Import Tool
In this section...
“Select Data Interactively” on page 2-4
“Import Data from Multiple Text Files” on page 2-7

Select Data Interactively

This example shows how to import data from a text file with column headers and
numeric data using the Import Tool. The file in this example, grades.txt, contains the
following data (to create the file, use any text editor, and copy and paste):

 John Ann Mark Rob
 88.4 91.5 89.2 77.3
 83.2 88.0 67.8 91.0
 77.8 76.3 92.5
 92.1 96.4 81.2 84.6

On the Home tab, in the Variable section, click Import Data . Alternatively,
right-click the name of the file in the Current Folder browser and select Import Data.
The Import Tool opens.

2 Text Files

2-4

The Import Tool recognizes that grades.txt is a fixed width file. In the Imported
Data section, select how you want the data to be imported. The following table indicates
how data is imported depending on the option you select.
Option Selected How Data is Imported
Table Import selected data as a table.
Column vectors Import each column of the selected data as

an individual m-by-1 vector.
Numeric Matrix Import selected data as an m-by-n numeric

array.
String Array Import selected data as a string array that

contains text.
Cell Array Import selected data as a cell array that

can contain multiple data types, such as
numeric data and text.

 Select Text File Data Using Import Tool

2-5

Under Delimiter Options, you can specify whether the Import Tool should use a period
or a comma as the decimal separator for numeric values.

Double-click on a variable name to rename it.

You also can use the Variable Names Row box in the Selection section to select the
row in the text file that the Import Tool uses for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain
data that cannot be imported in the format specified for that column. In this example,
the cell at row 3, column C, is considered unimportable because a blank cell is not
numeric. Highlight colors correspond to proposed rules to make the data fit into a

2 Text Files

2-6

numeric array. You can add, remove, reorder, or edit rules, such as changing the
replacement value from NaN to another value.

All rules apply to the imported data only, and do not change the data in the file. You
must specify rules any time the range includes nonnumeric data and you are importing
into a matrix or numeric column vectors.

You can see how your data will be imported when you place the cursor over individual
cells.

When you click the Import Selection button , the Import Tool creates variables in
your workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files
This example shows how to perform the same import operation on multiple files using
the Import Tool. You can generate code from the Import Tool, making it easier to repeat
the operation. The Import Tool generates a program script that you can edit and run to
import the files, or a function that you can call for each file.

 Select Text File Data Using Import Tool

2-7

http://www.mathworks.com/videos/import-tool-enhancements-for-text-files-101466.html

Suppose you have a set of text files in the current folder named myfile01.txt through
myfile25.txt, and you want to import the data from each file, starting from the second
row. Generate code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.
2 Click Import Selection , and then select Generate Function. The Import Tool

generates code similar to the following excerpt, and opens the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
...

3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data

from each text file into a cell array named myData:

numFiles = 25;
startRow = 2;
endRow = inf;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
 fileName = sprintf('myfile%02d.txt',fileNum);
 myData{fileNum} = importfile(fileName,startRow,endRow);
end

Each cell in myData contains an array of data from the corresponding text file. For
example, myData{1} contains the data from the first file, myfile01.txt.

See Also

More About
• “Ways to Import Text Files” on page 2-2

2 Text Files

2-8

Import Dates and Times from Text Files
Formatted dates and times (such as '01/01/01' or '12:30:45') are not numeric fields.
MATLAB interprets dates and times in files as text unless you specify that they should
be interpreted as date and time information. When reading a text file using textscan or
readtable, indicate date and time data using the %D format specifier. Additionally, you
can specify a particular date and time format using %{fmt}D, where fmt is the date and
time format. For example, the format specifier, %{dd/MMM/yyyy}D, describes the
datetime format, day/month/year.

You can use the Import Tool to import formatted dates and times as datetime values.
Specify the formats of dates and times, using the drop-down menu for each column. You
can select from a predefined date format, or enter a custom format.

 Import Dates and Times from Text Files

2-9

See Also
readtable | textscan

More About
• “Import Mixed Data from Text Files” on page 2-14

2 Text Files

2-10

Import Numeric Data from Text Files

In this section...
“Import Comma-Separated Data” on page 2-11
“Import Delimited Numeric Data” on page 2-12

Import Comma-Separated Data

This example shows how to import comma-separated numeric data from a text file, using
the csvread function.

Create a sample file named ph.dat that contains the following comma-separated data:

85.5, 54.0, 74.7, 34.2

63.0, 75.6, 46.8, 80.1

85.5, 39.6, 2.7, 38.7
A = 0.9*gallery('integerdata',99,[3,4],1);
dlmwrite('ph.dat',A,',')

The sample file, ph.dat, resides in your current folder.

Read the entire file using csvread. The file name is the only required input argument to
the csvread function.

M = csvread('ph.dat')

M =

 85.5000 54.0000 74.7000 34.2000
 63.0000 75.6000 46.8000 80.1000
 85.5000 39.6000 2.7000 38.7000

M is a 3-by-4 double array containing the data from the file.

Import only the rectangular portion of data starting from the first row and third column
in the file. When using csvread, row and column indices are zero-based.

 Import Numeric Data from Text Files

2-11

N = csvread('ph.dat',0,2)

N =

 74.7000 34.2000
 46.8000 80.1000
 2.7000 38.7000

Import Delimited Numeric Data

This example shows how to import numeric data delimited by any single character using
the dlmread function.

Create a tab-delimited file named num.txt that contains the following data:

95 89 82 92

23 76 45 74

61 46 61 18

49 2 79 41
A = gallery('integerdata',99,[4,4],0);
dlmwrite('num.txt',A,'\t')

The sample file, num.txt, resides in your current folder.

Read the entire file. The file name is the only required input argument to the dlmread
function. dlmread determines the delimiter from the formatting of the file.

M = dlmread('num.txt')

M =

 95 89 82 92
 23 76 45 74
 61 46 61 18
 49 2 79 41

M is a 4-by-4 double array containing the data from the file.

2 Text Files

2-12

Read only the rectangular block of data beginning from the second row, third column, in
the file. When using dlmread, row and column indices are zero-based. When you specify
a specific range to read, you must also specify the delimiter. Use '\t' to indicate a tab
delimiter.

N = dlmread('num.txt','\t',1,2)

N =

 45 74
 61 18
 79 41

dlmread returns a 3-by-2 double array.

Read only the first two columns. You can use spreadsheet notation to indicate the range,
in this case, 'A1..B4'.

P = dlmread('num.txt','\t','A1..B4')

P =

 95 89
 23 76
 61 46
 49 2

See Also
csvread | dlmread

More About
• “Ways to Import Text Files” on page 2-2

 See Also

2-13

Import Mixed Data from Text Files
This example shows how to use the readtable function to import mixed data from a
text file into a table. Then, it shows how to modify and analyze the data in the table.

Sample File Overview

The sample file, outages.csv, contains data representing electric utility outages in the
US. These are the first few lines of the file:

Region,OutageTime,Loss,Customers,RestorationTime,Cause
SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58,winter storm
SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm
SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter storm
West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault

The file contains six columns. The first line in the file lists column titles for the data.
These are the column titles, along with a description of the data in that column:

• Region: Text value for one of five regions where each electrical outage occurred
• OutageTime: Date and time at which the outage started, formatted as year-month-

day hour:minute
• Loss: Numeric value indicating the total power loss for the outage
• Customers: Integer value indicating the number of customers impacted
• RestorationTime: Date and time at which power was restored, formatted as year-

month-day hour:minute
• Cause: Category for the cause of the power outage, provided as text.

Specify Format of Data Fields

Create a character vector of format specifiers to describe the data in the text file. You can
then pass the format specifiers to the readtable function to import the data. Because
outages.csv contains six columns of data, create a character vector that contains six
format specifiers, such as '%f' for a floating-point number, '%C' for a categorical value,
and '%D' for a date and time value.

formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%f%{yyyy-MM-dd HH:mm}D%C';

formatSpec tells readtable to read the first and last columns in the file as categorical
data, the second and fifth columns as formatted date and time data, and the third and

2 Text Files

2-14

fourth columns as floating-point values. For the %{yyyy-MM-dd HH:mm}D specifiers, the
text between the curly braces describes the format of the date and time data.

Read Text File

Call readtable to read the file. Use the Delimiter name-value pair argument to
specify the delimiter. The default delimiter is a comma. Use the Format name-value pair
argument along with the formatSpec value to describe the format of the data fields in
the file.

T = readtable('outages.csv','Delimiter',',', ...
 'Format',formatSpec);

readtable returns a table containing the outage data.

View the first five rows and first four variables of the table.

T(1:5,1:4)

ans =

 5x4 table

 Region OutageTime Loss Customers
 _________ ________________ ______ __________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05
 West 2004-04-06 05:44 434.81 3.4037e+05
 MidWest 2002-03-16 06:18 186.44 2.1275e+05

The type of data contained in the table is mixed. The first and last variables are
categorical arrays, the second and fifth variables are datetime arrays, and the
remaining variables are numeric data.

Modify Imported Data

Modify the format of the datetime columns in T.

T.OutageTime.Format = 'dd-MMM-yyyy HH:mm:ss';
T.RestorationTime.Format = 'dd-MMM-yyyy HH:mm:ss';

 Import Mixed Data from Text Files

2-15

View the first five rows and first four variables of the table.

T(1:5,1:4)

ans =

 5x4 table

 Region OutageTime Loss Customers
 _________ ____________________ ______ __________

 SouthWest 01-Feb-2002 12:18:00 458.98 1.8202e+06
 SouthEast 23-Jan-2003 00:49:00 530.14 2.1204e+05
 SouthEast 07-Feb-2003 21:15:00 289.4 1.4294e+05
 West 06-Apr-2004 05:44:00 434.81 3.4037e+05
 MidWest 16-Mar-2002 06:18:00 186.44 2.1275e+05

Append to Imported Data

Calculate the duration of each electrical outage and append the data to the table.

T.Duration = T.RestorationTime - T.OutageTime;

View the first five rows of the data in the Duration column of T.

T.Duration(1:5)

ans =

 5x1 duration array

 148:32:00
 NaN
 226:59:00
 00:26:00
 65:05:00

Sort Imported Data

Sort the table by the OutageTime variable. Then, view the first five rows and first four
variables of the sorted table.

2 Text Files

2-16

T = sortrows(T,'OutageTime','ascend');
T(1:5,1:4)

ans =

 5x4 table

 Region OutageTime Loss Customers
 _________ ____________________ ______ __________

 SouthWest 01-Feb-2002 12:18:00 458.98 1.8202e+06
 MidWest 05-Mar-2002 17:53:00 96.563 2.8666e+05
 MidWest 16-Mar-2002 06:18:00 186.44 2.1275e+05
 MidWest 26-Mar-2002 01:59:00 388.04 5.6422e+05
 MidWest 20-Apr-2002 16:46:00 23141 NaN

See Also
readtable

More About
• “Import Dates and Times from Text Files” on page 2-9
• “Access Data in a Table”

 See Also

2-17

Import Large Text File Data in Blocks
This example shows how to read small blocks of data from an arbitrarily large delimited
text file using the textscan function and avoid memory errors. The first part of the
example shows how to specify a constant block size. The second part of the example
shows how to read and process each block of data in a loop.

Specify Block Size

Specify a constant block size, and then process each block of data within a loop.

Copy and paste the following text into a text editor to create a tab-delimited text file,
bigfile.txt, in your current folder.

A ID = 02476
YKZ Timestamp Temp Humidity Wind Weather
06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
B ID = 02477
YVR Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19.1 94 7 n/a
09-Sep-2013 09:00:00 18.5 94 4 fog
09-Sep-2013 13:00:00 20.1 81 15 mainly clear
09-Sep-2013 17:00:00 20.1 77 17 n/a
09-Sep-2013 18:00:00 20.0 75 17 n/a
09-Sep-2013 21:00:00 16.8 90 25 mainly clear
C ID = 02478
YYZ Timestamp Temp Humidity Wind Weather

This file has commented lines beginning with ## , throughout the file. The data is
arranged in five columns: The first column contains text indicating timestamps. The
second, third, and fourth columns contain numeric data indicating temperature,
humidity and wind speed. The last column contains descriptive text.

Define the size of each block to read from the text file. You do not need to know the total
number of blocks in advance, and the number of rows of data in the file do not have to
divide evenly into the block size.

2 Text Files

2-18

Specify a block size of 5.

N = 5;

Open the file to read using the fopen function.

fileID = fopen('bigfile.txt');

fopen returns a file identifier, fileID, that the textscan function calls to read from
the file. fopen positions a pointer at the beginning of the file, and each read operation
changes the location of that pointer.

Describe each data field using format specifiers, such as '%s' for a character vector,
'%d' for an integer, or '%f' for a floating-point number.

formatSpec = '%s %f %f %f %s';

In a while loop, call textscan to read each block of data. The file identifier, the format
specifer, and the segment size (N), are the first three inputs to textscan. Ignore the
commented lines using the CommentStyle name-value pair argument. Specify the tab
delimiter using the Delimiter name-value pair argument. Then, process the data in the
block. In this example, call scatter to display a scatter plot of temperature and
humidity values in the block. The commands within the loop execute while the file
pointer is not at the end of the file.

k = 0;
while ~feof(fileID)
 k = k+1;
 C = textscan(fileID,formatSpec,N,'CommentStyle','##','Delimiter','\t');
 figure
 scatter(C{2},C{3})
 title(['Temperature and Humidity, Block ',num2str(k)])
end

 Import Large Text File Data in Blocks

2-19

2 Text Files

2-20

 Import Large Text File Data in Blocks

2-21

textscan reads data from bigfile.txt indefinitely, until it reaches the end of the file
or until it cannot read a block of data in the format specified by formatSpec. For each
complete block, textscan returns a 1-by-5 cell array. Because the sample file,
bigfile.txt, contains 13 rows of data, textscan returns only 3 rows in the last block.

View the temperature values in the last block returned by textscan.

C{2}

ans =

 20.1000
 20.0000
 16.8000

2 Text Files

2-22

Close the file.

fclose(fileID);

Read Data with Arbitrary Block Sizes

Read and process separately each block of data between commented lines in the file,
bigfile.txt. The length of each block can be arbitrary. However, you must specify the
number of lines to skip between blocks of data. In bigfile.txt, each block of data is
preceded by two lines of comments.

Open the file for reading.

fileID = fopen('bigfile.txt');

Specify the format of the data you want to read. Tell textscan to ignore certain data
fields by including %* in formatSpec, the format specifier. In this example, skip the
third and fourth columns of floating-point data using '%*f'.

formatSpec = '%s %f %*f %*f %s';

Read a block of data in the file. Use the HeaderLines name-value pair argument to
instruct textscan to skip two lines before reading data.

D = textscan(fileID,formatSpec,'HeaderLines',2,'Delimiter','\t')

D =

 {7x1 cell} [6x1 double] {6x1 cell}

textscan returns a 1-by-3 cell array, D.

View the contents of the first cell in D.

D{1,1}

ans =

 '06-Sep-2013 01:00:00'
 '06-Sep-2013 05:00:00'
 '06-Sep-2013 09:00:00'
 '06-Sep-2013 13:00:00'
 '06-Sep-2013 17:00:00'
 '06-Sep-2013 21:00:00'
 '## B'

 Import Large Text File Data in Blocks

2-23

textscan stops reading after the text, '## B', because it cannot read the subsequent
text as a number, as specified by formatSpec. The file pointer remains at the position
where textscan terminated.

Process the first block of data. In this example, find the maximum temperature value in
the second cell of D.

maxTemp1 = max(D{1,2})

maxTemp1 =

 22.4000

Repeat the call to textscan to read the next block of data.

D = textscan(fileID,formatSpec,'HeaderLines',2,'Delimiter','\t')

D =

 {8x1 cell} [7x1 double] {7x1 cell}

Again, textscan returns a 1-by-3 cell array.

Find the maximum temperature value in this block of data.

maxTemp2 = max(D{1,2})

maxTemp2 =

 20.1000

Close the file.

fclose(fileID);

See Also
fopen | textscan

More About
• “Access Data in Cell Array”

2 Text Files

2-24

• “Moving within a File” on page 4-14

 See Also

2-25

Import Data from a Nonrectangular Text File
This example shows how to import data from a nonrectangular file using the textscan
function. When using textscan, your data does not have to be in a regular pattern of
columns and rows, but it must be in a repeated pattern.

Create a file named nonrect.dat that contains the following (copy and paste into a text
editor):
begin
v1=12.67
v2=3.14
v3=6.778
end
begin
v1=21.78
v2=5.24
v3=9.838
end

Open the file to read using the fopen function.

fileID = fopen('nonrect.dat');

fopen returns a file identifier, fileID, that textscan calls to read from the file.

Describe the pattern of the file data using format specifiers and delimiter parameters.
Typical format specifiers include '%s' for a character vector, '%d' for an integer, or
'%f' for a floating-point number. To import nonrect.dat, use the format specifier
'%*s' to tell textscan to skip the rows that contain begin and end. Include the literals
'v1=', 'v2=', and 'v3=' as part of the format specifiers, so that textscan ignores
those literals as well.
formatSpec = '%*s v1=%f v2=%f v3=%f %*s';

Import the data using textscan. Pass the file identifier and formatSpec as inputs.
Since each data field is on a new line, the delimiter is a newline character ('\n'). To
combine all the floating-point data into a single array, set the CollectOutput name-
value pair argument to true.

C = textscan(fileID,formatSpec,...
 'Delimiter', '\n', ...
 'CollectOutput', true)

2 Text Files

2-26

C =

 [2x3 double]

textscan returns the cell array, C.

Close the file.

fclose(fileID);

View the contents of C.

celldisp(C)

C{1} =

 12.6700 3.1400 6.7780
 21.7800 5.2400 9.8380

See Also
textscan

More About
• “Access Data in Cell Array”

 See Also

2-27

Write to Delimited Data Files
In this section...
“Export Numeric Array to ASCII File” on page 2-28
“Export Table to Text File” on page 2-29
“Export Cell Array to Text File” on page 2-31

Export Numeric Array to ASCII File
• “Export Numeric Array to ASCII File Using save” on page 2-28
• “Export Numeric Array to ASCII File Using dlmwrite” on page 2-29

To export a numeric array as a delimited ASCII data file, you can use either the save
function, specifying the -ASCII qualifier, or the dlmwrite function.

Both save and dlmwrite are easy to use. With dlmwrite, you can specify any character
as a delimiter, and you can export subsets of an array by specifying a range of values.

However, save -ascii and dlmwrite do not accept cell arrays as input. To create a
delimited ASCII file from the contents of a cell array, you can first convert the cell array
to a matrix using the cell2mat function, and then call save or dlmwrite. Use this
approach when your cell array contains only numeric data, and easily translates to a
two-dimensional numeric array.

Export Numeric Array to ASCII File Using save

To export the array A, where

A = [1 2 3 4 ; 5 6 7 8];

to a space-delimited ASCII data file, use the save function as follows:

save my_data.out A -ASCII

To view the file, use the type function:

type my_data.out

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

2 Text Files

2-28

When you use save to write a character array to an ASCII file, it writes the ASCII
equivalent of the characters to the file. For example, if you write 'hello' to a file, save
writes the values

104 101 108 108 111

to the file in 8-digit ASCII format.

To write data in 16-digit format, use the -double option. To create a tab-delimited file
instead of a space-delimited file, use the -tabs option.

Export Numeric Array to ASCII File Using dlmwrite

To export a numeric or character array to an ASCII file with a specified delimiter, use
the dlmwrite function.

For example, to export the array A,

A = [1 2 3 4 ; 5 6 7 8];

to an ASCII data file that uses semicolons as a delimiter, use this command:

dlmwrite('my_data.out',A, ';')

To view the file, use the type function:

type my_data.out

1;2;3;4
5;6;7;8

By default, dlmwrite uses a comma as a delimiter. You can specify a space (' ') or
other character as a delimiter. To specify no delimiter, use empty quotation marks ('').

Export Table to Text File

This example shows how to export a table to a text file, using the writetable function.

Create a sample table, T, for exporting.

Name = {'M4';'M5';'M6';'M8';'M10'};
Pitch = [0.7;0.8;1;1.25;1.5];
Shape = {'Pan';'Round';'Button';'Pan';'Round'};

 Write to Delimited Data Files

2-29

Price = [10.0;13.59;10.50;12.00;16.69];
Stock = [376;502;465;1091;562];
T = table(Pitch,Shape,Price,Stock,'RowNames',Name)

T=5x4 table
 Pitch Shape Price Stock
 _____ ________ _____ _____

 M4 0.7 'Pan' 10 376
 M5 0.8 'Round' 13.59 502
 M6 1 'Button' 10.5 465
 M8 1.25 'Pan' 12 1091
 M10 1.5 'Round' 16.69 562

The table has both column headings and row names.

Export the table, T, to a text file named tabledata.txt.

writetable(T,'tabledata.txt')

View the file.

type tabledata.txt

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502
1,Button,10.5,465
1.25,Pan,12,1091
1.5,Round,16.69,562

By default, writetable writes comma-separated data, includes table variable names as
column headings, and does not write row names.

Export table T to a tab-delimited text file named tabledata2.txt and write the row
names in the first column of the output. Use the Delimiter name-value pair argument
to specify a tab delimiter, and the WriteRowNames name-value pair argument to include
row names.

writetable(T,'tabledata2.txt','Delimiter','\t','WriteRowNames',true)

View the file.

type tabledata2.txt

2 Text Files

2-30

Row Pitch Shape Price Stock
M4 0.7 Pan 10 376
M5 0.8 Round 13.59 502
M6 1 Button 10.5 465
M8 1.25 Pan 12 1091
M10 1.5 Round 16.69 562

Export Cell Array to Text File
Export Cell Array Using fprintf

This example shows how to export a cell array to a text file, using the fprintf function.

Create a sample cell array, C, for exporting.

C = {'Atkins',32,77.3,'M';'Cheng',30,99.8,'F';'Lam',31,80.2,'M'}

C = 3x4 cell array
 {'Atkins'} {[32]} {[77.3000]} {'M'}
 {'Cheng' } {[30]} {[99.8000]} {'F'}
 {'Lam' } {[31]} {[80.2000]} {'M'}

Open a file named celldata.dat for writing.

fileID = fopen('celldata.dat','w');

fopen returns a file identifier, fileID, that fprintf calls to write to the file.

Describe the pattern of the file data using format specifiers. Typical format specifiers
include '%s' for a character vector, '%d' for an integer, or '%f' for a floating-point
number. Separate each format specifier with a space to indicate a space delimiter for the
output file. Include a newline character at the end of each row of data ('\n').

formatSpec = '%s %d %2.1f %s\n';

Some Windows® text editors, including Microsoft® Notepad, require a newline character
sequence of '\r\n' instead of '\n'. However, '\n' is sufficient for Microsoft Word or
WordPad.

Determine the size of C. Then, export one row of data at a time using the fprintf
function.

 Write to Delimited Data Files

2-31

[nrows,ncols] = size(C);
for row = 1:nrows
 fprintf(fileID,formatSpec,C{row,:});
end

fprintf writes a space-delimited file.

Close the file.

fclose(fileID);

View the file.

type celldata.dat

Atkins 32 77.3 M
Cheng 30 99.8 F
Lam 31 80.2 M

Convert Cell Array to Table for Export

This example shows how to convert a cell array of mixed text and numeric data to a table
before writing the data to a text file. Tables are suitable for column-oriented or tabular
data. You then can write the table to a text file using the writetable function.

Convert the cell array, C, from the previous example, to a table using the cell2table
function. Add variable names to each column of data using the VariableNames name-
value pair argument.

T = cell2table(C,'VariableNames',{'Name','Age','Result','Gender'});

Write table T to a text file.

writetable(T,'tabledata.dat')

View the file.

type tabledata.dat

Name,Age,Result,Gender
Atkins,32,77.3,M

2 Text Files

2-32

Cheng,30,99.8,F
Lam,31,80.2,M

See Also
dlmwrite | fprintf | save | type | writetable

 See Also

2-33

Write to a Diary File
To keep an activity log of your MATLAB session, use the diary function. diary creates
a verbatim copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

execute these commands at the MATLAB prompt to export this array using diary:

1 Turn on the diary function. Optionally, you can name the output file diary creates:

diary my_data.out
2 Display the contents of the array you want to export. This example displays the

array A. You could also display a cell array or other MATLAB class:

A =
 1 2 3 4
 5 6 7 8

3 Turn off the diary function:

diary off

diary creates the file my_data.out and records all the commands executed in the
MATLAB session until you turn it off:

A =

 1 2 3 4
 5 6 7 8

diary off
4 Open the diary file my_data.out in a text editor and remove the extraneous text, if

desired.

2 Text Files

2-34

Spreadsheets

• “Ways to Import Spreadsheets” on page 3-2
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table ” on page 3-7
• “Read Spreadsheet Data into Arrays” on page 3-10
• “Read All Worksheets from Spreadsheet File ” on page 3-13
• “System Requirements and Supported File Formats for Spreadsheets” on page 3-16
• “Read Sequence of Spreadsheet Files” on page 3-17
• “Write Data to Excel Spreadsheets” on page 3-20
• “Define Import Options for Tables” on page 3-23

3

Ways to Import Spreadsheets

In this section...
“Import Data from Spreadsheets” on page 3-2
“Paste Data from Clipboard” on page 3-3

Import Data from Spreadsheets

You can import data from spreadsheet files into MATLAB interactively or
programmatically, using an import function.

This table compares the primary ways to import spreadsheet files.
Ways to Import Spreadsheet
Files

Description For More Information, See...

Import Tool Import a worksheet or
range to column vectors, a
matrix, a cell array, or a
table. You can generate code
to repeat the operation on
multiple files that are
similar.

“Read Spreadsheet Data
Using Import Tool” on page
3-4

readtable Import a worksheet or
range to a table.

“Read Spreadsheet Data
into Table” on page 3-7

“Define Import Options for
Tables” on page 3-23

xlsread Import a worksheet or
range to numeric and cell
arrays.

“Read Spreadsheet Data
into Arrays” on page 3-10

SpreadsheetDatastore Import data from one or
more worksheets in a file.

Import data from from a
collection of spreadsheet
files.

“Importing Data from Excel
Spreadsheets”

3 Spreadsheets

3-2

Some import options require that your system includes Excel for Windows. For more
information, see “System Requirements and Supported File Formats for Spreadsheets”
on page 3-16.

Paste Data from Clipboard

Paste data from the clipboard into MATLAB using one of the following methods:

• On the Workspace browser title bar, click , and then select Paste.
• Open an existing variable in the Variables editor, right-click, and then select Paste

Excel Data.
• Call uiimport -pastespecial.

See Also
Import Tool | SpreadsheetDatastore | readtable | xlsfinfo | xlsread

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table” on page 3-7
• “Read Spreadsheet Data into Arrays” on page 3-10
• “Read All Worksheets from Spreadsheet File” on page 3-13
• “Read Sequence of Spreadsheet Files” on page 3-17

 See Also

3-3

Read Spreadsheet Data Using Import Tool

In this section...
“Select Data Interactively” on page 3-4
“Import Data from Multiple Spreadsheets” on page 3-6

Select Data Interactively

This example shows how to import data from a spreadsheet into the workspace using the
Import Tool. The worksheet in this example includes three columns of data labeled
Station, Temp, and Date:

Station Temp Date
12 98 9/22/2013
13 x 10/23/2013
14 97 12/1/2013

On the Home tab, in the Variable section, click Import Data . Alternatively, in
the Current Folder browser, double-click the name of a file with an extension
of .xls, .xlsx, .xlsb, or .xlsm. The Import Tool opens.

Select the data you want to import. In the Imported Data section, select how you want
the data to be imported. The option you select dictates the data type of the imported
data.
Option Selected How Data Is Imported
Column vectors Import each column of the selected data as

an individual m-by-1 vector.
Numeric Matrix Import selected data as an m-by-n numeric

array.
String Array Import selected data as an m-by-n string

array.
Cell Array Import selected data as a cell array that

can contain multiple data types, such as
numeric data and text.

Table Import selected data as a table.

3 Spreadsheets

3-4

For example, the data in the following figure corresponds to data for three column
vectors. You can edit the variable name within the tab, and you can select noncontiguous
sections of data for the same variable.

If you choose to import the data as a matrix or as numeric column vectors, the tool
highlights any nonnumeric data in the worksheet. Each highlight color corresponds to a
proposed rule to make the data fit into a numeric array. For example, you can replace
nonnumeric values with NaN. Also, you can see how your data will be imported when you
place the cursor over individual cells.

You can add, remove, reorder, or edit rules, such as changing the replacement value from
NaN to another value. All rules apply to the imported data only and do not change the
data in the file. You must specify rules any time the range includes nonnumeric data and
you are importing into a matrix or numeric column vectors.

Any cells that contain #Error? correspond to formula errors in your spreadsheet file,
such as division by zero. The Import Tool regards these cells as nonnumeric.

When you click the Import Selection button , the Import Tool creates variables in
your workspace.

For more information on interacting with the Import Tool, watch this video.

 Read Spreadsheet Data Using Import Tool

3-5

http://www.mathworks.com/videos/importing-spreadsheets-into-matlab-101491.html

Import Data from Multiple Spreadsheets

If you plan to perform the same import operation on multiple files, you can generate code
from the Import Tool to make it easier to repeat the operation. On all platforms, the
Import Tool can generate a program script that you can edit and run to import the files.
On Microsoft Windows systems with Excel software, the Import Tool can generate a
function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named
myfile01.xlsx through myfile25.xlsx, and you want to import the same range of
data, A2:G100, from the first worksheet in each file. Generate code to import the entire
set of files as follows:

1 Open one of the files in the Import Tool.
2 From the Import button, select Generate Function. The Import Tool generates

code similar to the following excerpt, and opens the code in the Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet
...

3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data

from each spreadsheet into a cell array named myData:

numFiles = 25;
range = 'A2:G100';
sheet = 1;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
 fileName = sprintf('myfile%02d.xlsx',fileNum);
 myData{fileNum} = importfile(fileName,sheet,range);
end

Each cell in myData contains an array of data from the corresponding worksheet. For
example, myData{1} contains the data from the first file, myfile01.xlsx.

3 Spreadsheets

3-6

Read Spreadsheet Data into Table
This example shows how to import mixed numeric and text data from a spreadsheet into
a table. MATLAB® tables store both the data and relevant supporting information such
as variable names or row names, all in a single container. You can import all the data in
the worksheet or import only a subset of interest.

Preview the Data

Open the file airlinesmall_subset.xlsx and preview its contents in a spreadsheet
application like Excel®. To locate the file, type 'which airlinesmall_subset.xlsx' in
the command window. The data in the file comes from USA domestic airline flights
between 1996 and 2008. The information is organized in multiple worksheets, where
each sheet contains data for 1 year. The screenshot here shows only the first 10 rows and
columns from the worksheet titled 1996.

Read All Data from Worksheet

Call readtable to read all the data in the worksheet called 1996 in
airlinesmall_subset.xlsx and display only the first 10 rows and columns. Specify
the worksheet name using the Sheet name-value pair argument. If your data is on the
first worksheet in the file, you do not need to specify Sheet.

T = readtable('airlinesmall_subset.xlsx','Sheet','1996');
T(1:10,1:10)

 Read Spreadsheet Data into Table

3-7

ans=10x10 table null
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415
 1996 1 12 5 1252 1245 1511 1500 'HP' 610
 1996 1 16 2 1441 1445 1708 1721 'HP' 211
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245
 1996 1 4 4 1814 1814 1901 1910 'US' 683
 1996 1 31 3 1822 1820 1934 1925 'US' 757
 1996 1 18 4 729 730 841 843 'US' 1564
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538
 1996 1 11 4 1858 1850 1959 1956 'US' 2225
 1996 1 7 7 2100 2100 2215 2220 'WN' 174

Read Selected Range from Worksheet

Read only 10 rows of data from the first 3 columns by specifying a range, 'A1:C11'. The
readtable function returns a 10-by-3 table.

T_selected = readtable('airlinesmall_subset.xlsx','Sheet','1996','Range','A1:C11')

T_selected=10x3 table null
 Year Month DayofMonth
 ____ _____ __________

 1996 1 18
 1996 1 12
 1996 1 16
 1996 1 1
 1996 1 4
 1996 1 31
 1996 1 18
 1996 1 26
 1996 1 11
 1996 1 7

See Also
readtable | writetable

3 Spreadsheets

3-8

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Arrays” on page 3-10
• “Read All Worksheets from Spreadsheet File” on page 3-13
• “Read Sequence of Spreadsheet Files” on page 3-17

 See Also

3-9

Read Spreadsheet Data into Arrays
Import mixed numeric and text data into separate arrays in MATLAB®, using the
xlsread function.

Preview Data

This example uses the sample spreadsheet file climate.xlsx that contains a worksheet
named Temperatures. Load the file and preview its contents in a spreadsheets
application like Excel®. The screenshot here shows that this file contains column-
oriented tabular data.

Read All Numeric Data into Matrix

Import only the numeric data into a matrix, using xlsread with a single output
argument. The xlsread function ignores any leading row or column of text in the
numeric result.

num = xlsread('climate.xlsx','Temperatures')

num =

 12 98
 13 99
 14 97

3 Spreadsheets

3-10

Read Both Numeric and Text Data into Arrays

Alternatively, import both numeric data and text data by specifying two output
arguments. The xlsread function returns the numeric data in the array and the text
data in the cell array.

[num,txt] = xlsread('climate.xlsx','Temperatures')

num =

 12 98
 13 99
 14 97

txt = 4x3 cell array
 {'Time' } {'Temp' } {'Visibility' }
 {0x0 char} {0x0 char} {'clear' }
 {0x0 char} {0x0 char} {'clear' }
 {0x0 char} {0x0 char} {'partly cloudy'}

Read Specified Range into Matrix

Read only the first row of data by specifying a range, 'A2:B2'.

first_row = xlsread('climate.xlsx','Temperatures','A2:B2')

first_row =

 12 98

See Also
readtable | xlsfinfo | xlsread

More About
• “Read Spreadsheet Data Using Import Tool” on page 3-4
• “Read Spreadsheet Data into Table” on page 3-7
• “Read All Worksheets from Spreadsheet File” on page 3-13

 See Also

3-11

• “Read Sequence of Spreadsheet Files” on page 3-17

3 Spreadsheets

3-12

Read All Worksheets from Spreadsheet File
Import all worksheets from an Excel® file. In this example, you gather information about
the worksheets, import the worksheets into the workspace, and then analyze the
imported data.

Gather Information About Worksheets

This example uses the spreadsheet file 'airlinesmall_subset.xlsx', which contains
mixed data in multiple worksheets, organized by the year. The file contains 13
worksheets of column-oriented data and each worksheet contains 29 columns. The
preview here shows the first 10 rows and columns from the worksheet named '1996'.

Get the names of all the worksheets and display the total number of spreadsheets
contained in the file. On a Windows® system with Excel® installed, you can use
xlsfinfo to get the sheet names.

[~,SheetNames] = xlsfinfo('airlinesmall_subset.xlsx')

SheetNames = 1x13 cell array
 Columns 1 through 6

 {'1996'} {'1997'} {'1998'} {'1999'} {'2000'} {'2001'}

 Columns 7 through 12

 Read All Worksheets from Spreadsheet File

3-13

 {'2002'} {'2003'} {'2004'} {'2005'} {'2006'} {'2007'}

 Column 13

 {'2008'}

nSheets = length(SheetNames)

nSheets = 13

Import Worksheets

Import the worksheets, one at a time, and organize them in a structure array S. For
instance, import the first worksheet into S(1).Data, the second worksheet into
S(2).Data, and the last worksheet into S(nSheets).Data.

 for iSheet = 1:nSheets
 Name = SheetNames{iSheet};
 Data = readtable('airlinesmall_subset.xlsx','Sheet',Name) ;
 S(iSheet).Name = Name;
 S(iSheet).Data = Data;
 end

Examine Imported Data

Examine the structure array. The size of S corresponds to the number of worksheets in
the file, which is 13.

 S

S = 1x13 struct array with fields:
 Name
 Data

Retrieve the name and first 10 rows and columns from the first worksheet and verify if
they match the data in the spreadsheet.
 S(1).Name

ans =
'1996'

 S(1).Data(1:10,1:10)

3 Spreadsheets

3-14

ans=10x10 table
 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________

 1996 1 18 4 2117 2120 2305 2259 'HP' 415
 1996 1 12 5 1252 1245 1511 1500 'HP' 610
 1996 1 16 2 1441 1445 1708 1721 'HP' 211
 1996 1 1 1 2258 2300 2336 2335 'HP' 1245
 1996 1 4 4 1814 1814 1901 1910 'US' 683
 1996 1 31 3 1822 1820 1934 1925 'US' 757
 1996 1 18 4 729 730 841 843 'US' 1564
 1996 1 26 5 1704 1705 1829 1839 'NW' 1538
 1996 1 11 4 1858 1850 1959 1956 'US' 2225
 1996 1 7 7 2100 2100 2215 2220 'WN' 174

To get a table value, index into it. For example, from the first worksheet, get the variable
ArrDelay which captures the arrival delay in minutes for the year 1996. Then, compute
maximum arrival delay for that year.

 ArrDelay = S(1).Data.ArrDelay;
 maxDelay = max(ArrDelay);
 maxDelayInHours = maxDelay/60

maxDelayInHours = 6.6333

See Also
readtable | spreadsheetDatastore

More About
• “Importing Data from Excel Spreadsheets”
• “Read Spreadsheet Data into Table” on page 3-7
• “Read Sequence of Spreadsheet Files” on page 3-17

 See Also

3-15

System Requirements and Supported File Formats for
Spreadsheets
System Supported File Extensions
Windows with Microsoft Excel XLS

XLSX

XLSM

XLSB

ODS

XLTM (import only)

XLTX (import only)
Mac, Linux, or Windows without Microsoft Excel XLS

XLSX

XLSM

XLTM (import only)

XLTX (import only)

Note Large files in XLSX format sometimes load slowly. For better import and export
performance, Microsoft recommends that you use the XLSB format.

3 Spreadsheets

3-16

Read Sequence of Spreadsheet Files
In this section...
“Get File Names” on page 3-17
“Read One File At a Time” on page 3-18
“Preview the Data from File” on page 3-18

You can read multiple spreadsheet files from a collection and organize the data into a
MATLAB structure. To import the data, first get a complete list of file names, and then
read the files one at a time.

Get File Names
If the folder C:\Data contains a collection of files, then use the dir command to gather
the list of file names and display the number of files in the collection. Your results will
differ based on your files and data.

list = dir('C:\Data*.xlsx');
numFiles = length(list)

numFiles = 10

 Read Sequence of Spreadsheet Files

3-17

Read One File At a Time

Import the data one file at a time, using readtable in a for loop. The readtable
function reads and returns the tabular data from the first sheet of the spreadsheet file.

for iFile = 1:numFiles
 FileName = list(iFile).name;
 Data(iFile).FileName = FileName;
 Data(iFile).T = readtable(FileName);
end

If your data is located in specific worksheet or range, then use the 'Sheet' or 'Range'
name-value pair to specify the data location. For more information on the name-value
pairs, see readtable.

Preview the Data from File

Display the file name and the imported table for the first file. Your results will differ
based on your files and data.

Data(1).FileName
Data(1).T

ans = 'File01.xlsx'
ans =
 LastName Age Weight Smoker
 __________ ___ ______ ______

 'Smith' 38 176 1
 'Johnson' 43 163 0
 'Williams' 38 131 0
 'Jones' 40 133 0
 'Brown' 49 119 0

See Also
readtable | spreadsheetDatastore

3 Spreadsheets

3-18

More About
• “Importing Data from Excel Spreadsheets”
• “Read Spreadsheet Data into Table” on page 3-7
• “Read All Worksheets from Spreadsheet File” on page 3-13

 See Also

3-19

Write Data to Excel Spreadsheets

In this section...
“Write Tabular Data to Spreadsheet File” on page 3-20
“Write Numeric and Text Data to Spreadsheet File” on page 3-21
“Disable Warning When Adding New Worksheet” on page 3-22
“Format Cells in Excel Files” on page 3-22

Write Tabular Data to Spreadsheet File

To export a table in the workspace to a Microsoft® Excel® spreadsheet file, use the
writetable function. You can export data from the workspace to any worksheet in the
file, and to any location within that worksheet. By default, writetable writes your
table data to the first worksheet in the file, starting at cell A1.

For example, create a sample table of column-oriented data and display the first five
rows.

load patients.mat
T = table(LastName,Age,Weight,Smoker);
T(1:5,:)

ans=5x4 table null
 LastName Age Weight Smoker
 __________ ___ ______ ______

 'Smith' 38 176 true
 'Johnson' 43 163 false
 'Williams' 38 131 false
 'Jones' 40 133 false
 'Brown' 49 119 false

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx,
starting at cell D1. To specify the portion of the worksheet you want to write to, use the
Range name-value pair argument.

filename = 'patientdata.xlsx';
writetable(T,filename,'Sheet',1,'Range','D1')

3 Spreadsheets

3-20

By default, writetable writes the table variable names as column headings in the
spreadsheet file.

To write the table T to the second sheet in the file without the table variable names,
specify the name-value pair WriteVariableNames as false.

writetable(T,filename,'Sheet',2,'WriteVariableNames',false)

Write Numeric and Text Data to Spreadsheet File

To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the
xlswrite function. You can export data in individual numeric and text workspace
variables to any worksheet in the file, and to any location within that worksheet. By
default, xlswrite writes your matrix data to the first worksheet in the file, starting at
cell A1.

For example, create a sample array of numeric data, A, and a sample cell array of text
and numeric data, C.

A = magic(5)
C = {'Time', 'Temp'; 12 98; 13 'x'; 14 97}

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

C =

 'Time' 'Temp'
 [12] [98]
 [13] 'x'
 [14] [97]

Write array A to the 5-by-5 rectangular region, E1:I5, on the first sheet in a new
spreadsheet file named testdata.xlsx.

 Write Data to Excel Spreadsheets

3-21

filename = 'testdata.xlsx';
xlswrite(filename,A,1,'E1:I5')

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named
Temperatures. When you specify the sheet, you can specify range using only the first
cell.

xlswrite(filename,C,'Temperatures','B2');

xlswrite will display a warning because the worksheet, Temperatures, did not
previously exist, but you can disable this warning.

Disable Warning When Adding New Worksheet

If the target worksheet does not exist in the file, then the writetable and xlswrite
functions display this warning:

Warning: Added specified worksheet.

You can disable these warnings with this command:

warning('off','MATLAB:xlswrite:AddSheet')

Format Cells in Excel Files

To write data to Excel files on Windows systems with custom formats (such as fonts or
colors), access the COM server directly using actxserver rather than writetable or
xlswrite. For example, Technical Solution 1-QLD4K uses actxserver to establish a
connection between MATLAB and Excel, write data to a worksheet, and specify the
colors of the cells.

For more information, see “Getting Started with COM”.

See Also
writetable | xlswrite

3 Spreadsheets

3-22

http://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

Define Import Options for Tables
Typically, you can import tables using the readtable function. However, sometimes
importing tabular data requires additional control over the import process. For example,
you might want to select the variables to import or handle rows with missing or error-
causing data. Control the import process by creating an import options object. The object
has properties that you can adjust based on your import needs.

Create Import Options

Create an import options object for a sample data set, airlinesmall.csv.

opts = detectImportOptions('airlinesmall.csv');

The detectImportOptions function creates a SpreadsheetImportOptions object for
spreadsheet files and a DelimitedTextImportOptions object for text files.

Customize Table-Level Import Options

Set property values to define import options. Some options apply to the entire table, and
some apply to specific variables. For example, rules to manage missing or error-causing
data are defined by the table-wide MissingRule and ImportErrorRule properties.

opts.ImportErrorRule = 'omitrow';
opts.MissingRule = 'fill';

Setting ImportErrorRule to 'omitrow' removes rows with data that cause import
errors. Setting MissingRule to 'fill' replaces missing values with values that are
defined by the FillValue property. For instance, missing numeric values become NaN.

Customize Variable-Level Import Options

To get and set options for specific variables use the getvaropts, setvartype, and
setvaropts functions. For example, view the current options for the variables named
FlightNum, Origin, Dest, and ArrDelay, using the getvaropts function.

getvaropts(opts,{'FlightNum','Origin','Dest','ArrDelay'})

ans =

 1x4 VariableImportOptions array with properties:

 Define Import Options for Tables

3-23

 Variable Options:
 (1) | (2) | (3) | (4)
 Name: 'FlightNum' | 'Origin' | 'Dest' | 'ArrDelay'
 Type: 'double' | 'char' | 'char' | 'double'
 FillValue: NaN | '' | '' | NaN
 TreatAsMissing: {} | {} | {} | {}
 QuoteRule: 'remove' | 'remove' | 'remove' | 'remove'

Change the data types for the variables using the setvartype function:

• Since the values in the variable FlightNum are identifiers for the flight and not
numerical values, change its data type to char.

• Since the variables Origin and Dest designate a finite set of repeating text values,
change their data type to categorical.

 opts = setvartype(opts,{'FlightNum','Origin','Dest','ArrDelay'},...
 {'char','categorical','categorical','single'});

Change other properties using the setvaropts function:

• For the FlightNum variable, remove any leading white spaces from the text by
setting the WhiteSpaceRule property to trimleading.

• For the ArrDelay variable, replace fields containing 0 or NA with the value specified
in FillValue property by setting the TreatAsMissing property.

 opts = setvaropts(opts,'FlightNum','WhitespaceRule','trimleading');
 opts = setvaropts(opts,'ArrDelay','TreatAsMissing',{'0','NA'});

Import Table

Specify the variables to get, import them using readtable, and display the first 10 rows
of the table.

opts.SelectedVariableNames = {'FlightNum','Origin','Dest','ArrDelay'};
T = readtable('airlinesmall.csv',opts);
T(1:10,:)

ans =

 FlightNum Origin Dest ArrDelay
 _________ ______ ____ ________

3 Spreadsheets

3-24

 '1503' LAX SJC 8
 '1550' SJC BUR 8
 '1589' SAN SMF 21
 '1655' BUR SJC 13
 '1702' SMF LAX 4
 '1729' LAX SJC 59
 '1763' SAN SFO 3
 '1800' SEA LAX 11
 '1831' LAX SJC 3
 '1864' SFO LAS 2

See Also
DelimitedTextImportOptions | SpreadsheetImportOptions |
detectImportOptions | getvaropts | readtable | setvaropts | setvartype

 See Also

3-25

Low-Level File I/O

• “Import Text Data Files with Low-Level I/O” on page 4-2
• “Import Binary Data with Low-Level I/O” on page 4-10
• “Export to Text Data Files with Low-Level I/O” on page 4-18
• “Export Binary Data with Low-Level I/O” on page 4-24

4

Import Text Data Files with Low-Level I/O
In this section...
“Overview” on page 4-2
“Reading Data in a Formatted Pattern” on page 4-3
“Reading Data Line-by-Line” on page 4-5
“Testing for End of File (EOF)” on page 4-6
“Opening Files with Different Character Encodings” on page 4-9

Overview

Low-level file I/O functions allow the most control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your
file than the easier-to-use high-level functions, such as importdata. For more
information on the high-level functions that read text files, see “Ways to Import Text
Files” on page 2-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view
in a text editor. For more information, see “Reading Data in a Formatted Pattern” on
page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline character
separates each line. For more information, see “Reading Data Line-by-Line” on page
4-5.

• fread, which reads a stream of data at the byte or bit level. For more information,
see “Import Binary Data with Low-Level I/O” on page 4-10.

For additional information, see:

• “Testing for End of File (EOF)” on page 4-6
• “Opening Files with Different Character Encodings” on page 4-9

Note The low-level file I/O functions are based on functions in the ANSI® Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.

4 Low-Level File I/O

4-2

Reading Data in a Formatted Pattern

To import text files that importdata and textscan cannot read, consider using
fscanf. The fscanf function requires that you describe the format of your file, but
includes many options for this format description.

For example, create a text file mymeas.dat as shown. The data in mymeas.dat includes
repeated sets of times, dates, and measurements. The header text includes the number of
sets of measurements, N:

Measurement Data
N=3

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40
15-Apr-2003
7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

Opening the File

As with any of the low-level I/O functions, before reading, open the file with fopen, and
obtain a file identifier. By default, fopen opens files for read access, with a permission of
'r'.

When you finish processing the file, close it with fclose(fid).

 Import Text Data Files with Low-Level I/O

4-3

Describing the Data

Describe the data in the file with format specifiers, such as '%s' for text, '%d' for an
integer, or '%f' for a floating-point number. (For a complete list of specifiers, see the
fscanf reference page.)

To skip literal characters in the file, include them in the format description. To skip a
data field, use an asterisk ('*') in the specifier.

For example, consider the header lines of mymeas.dat:

Measurement Data % skip the first 2 words, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n
 % go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
...

To read the headers and return the single value for N:

N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

Specifying the Number of Values to Read

By default, fscanf reapplies your format description until it cannot match the
description to the data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not attempt to read
the entire file. For example, in mymeas.dat, each set of measurements includes a fixed
number of rows and columns:

measrows = 4;
meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace

There are several ways to store mymeas.dat in the MATLAB workspace. In this case,
read the values into a structure. Each element of the structure has three fields: mtime,
mdate, and meas.

4 Low-Level File I/O

4-4

Note fscanf fills arrays with numeric values in column order. To make the output array
match the orientation of numeric data in a file, transpose the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements
for n = 1:N
 mystruct(n).mtime = fscanf(fid, '%s', 1);
 mystruct(n).mdate = fscanf(fid, '%s', 1);

 % fscanf fills the array in column order,
 % so transpose the results
 mystruct(n).meas = ...
 fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

Reading Data Line-by-Line
MATLAB provides two functions that read lines from files and store them as character
vectors: fgetl and fgets. The fgets function copies the line along with the newline
character to the output, but fgetl does not.

The following example uses fgetl to read an entire file one line at a time. The function
litcount determines whether a given character sequence (literal) appears in each
line. If it does, the function prints the entire line preceded by the number of times the
literal appears on the line.

function y = litcount(filename, literal)
% Count the number of times a given literal appears in each line.

fid = fopen(filename);

 Import Text Data Files with Low-Level I/O

4-5

y = 0;
tline = fgetl(fid);
while ischar(tline)
 matches = strfind(tline, literal);
 num = length(matches);
 if num > 0
 y = y + num;
 fprintf(1,'%d:%s\n',num,tline);
 end
 tline = fgetl(fid);
end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times 'an' appears in this file, call litcount:

litcount('badpoem','an')

This returns:

2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,
ans =
 6

Testing for End of File (EOF)

When you read a portion of your data at a time, you can use feof to check whether you
have reached the end of the file. feof returns a value of 1 when the file pointer is at the
end of the file. Otherwise, it returns 0.

Note Opening an empty file does not move the file position indicator to the end of the file.
Read operations, and the fseek and frewind functions, move the file position indicator.

4 Low-Level File I/O

4-6

Testing for EOF with feof

When you use textscan, fscanf, or fread to read portions of data at a time, use feof
to check whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas.dat has the following form, with
no information about the number of measurement sets. Read the data into a structure
with fields for mtime, mdate, and meas:

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46

To read the file:

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize = finfo.bytes;

if fsize > 0

 % read the file
 block = 1;
 while ~feof(fid)
 mystruct(block).mtime = fscanf(fid, '%s', 1);
 mystruct(block).mdate = fscanf(fid, '%s', 1);

 % fscanf fills the array in column order,

 Import Text Data Files with Low-Level I/O

4-7

 % so transpose the results
 mystruct(block).meas = ...
 fscanf(fid, '%f', [measrows, meascols])';

 block = block + 1;
 end

end

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets

If you use fgetl or fgets in a control loop, feof is not always the best way to test for
end of file. As an alternative, consider checking whether the value that fgetl or fgets
returns is a character vector.

For example, the function litcount described in “Reading Data Line-by-Line” on page
4-5 includes the following while loop and fgetl calls :

y = 0;
tline = fgetl(fid);
while ischar(tline)
 matches = strfind(tline, literal);
 num = length(matches);
 if num > 0
 y = y + num;
 fprintf(1,'%d:%s\n',num,tline);
 end
 tline = fgetl(fid);
end

This approach is more robust than testing ~feof(fid) for two reasons:

• If fgetl or fgets find data, they return a character vector. Otherwise, they return a
number (-1).

• After each read operation, fgetl and fgets check the next character in the file for
the end-of-file marker. Therefore, these functions sometimes set the end-of-file
indicator before they return a value of -1. For example, consider the following three-
line text file. Each of the first two lines ends with a newline character, and the third
line contains only the end-of-file marker:

4 Low-Level File I/O

4-8

123
456

Three sequential calls to fgetl yield the following results:

t1 = fgetl(fid); % t1 = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

This behavior does not conform to the ANSI specifications for the related C language
functions.

Opening Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply
that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

 Import Text Data Files with Low-Level I/O

4-9

Import Binary Data with Low-Level I/O
In this section...
“Low-Level Functions for Importing Data” on page 4-10
“Reading Binary Data in a File” on page 4-11
“Reading Portions of a File” on page 4-13
“Reading Files Created on Other Systems” on page 4-16
“Opening Files with Different Character Encodings” on page 4-16

Low-Level Functions for Importing Data

Low-level file I/O functions allow the most direct control over reading or writing data to
a file. However, these functions require that you specify more detailed information about
your file than the easier-to-use high-level functions. For a complete list of high-level
functions and the file formats they support, see “Supported File Formats for Import and
Export” on page 1-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view
in a text editor. For more information, see “Reading Data in a Formatted Pattern” on
page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline character
separates each line. For more information, see “Reading Data Line-by-Line” on page
4-5.

• fread, which reads a stream of data at the byte or bit level. For more information,
see “Reading Binary Data in a File” on page 4-11.

Note The low-level file I/O functions are based on functions in the ANSI Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.

4 Low-Level File I/O

4-10

Reading Binary Data in a File

As with any of the low-level I/O functions, before importing, open the file with fopen,
and obtain a file identifier. When you finish processing a file, close it with
fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as an 8-bit
unsigned integer (uint8). fread creates a column vector, with one element for each byte
in the file. The values in the column vector are of class double.

For example, consider the file nine.bin, created as follows:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

Changing the Dimensions of the Array

By default, fread reads all values in the file into a column vector. However, you can
specify the number of values to read, or describe a two-dimensional output matrix.

For example, to read nine.bin, described in the previous example:

fid = fopen('nine.bin');

% Read only the first six values
col6 = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);
two_dim4 = fread(fid, [2, 2]);

% Read into a matrix with 3 rows and
% unspecified number of columns

 Import Binary Data with Low-Level I/O

4-11

frewind(fid);
two_dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

Describing the Input Values

If the values in your file are not 8-bit unsigned integers, specify the size of the values.

For example, consider the file fpoint.bin, created with double-precision values as
follows:

myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')';

fclose(fid);

For a complete list of precision descriptions, see the fread function reference page.

Saving Memory

By default, fread creates an array of class double. Storing double-precision values in
an array requires more memory than storing characters, integers, or single-precision
values.

To reduce the amount of memory required to store your data, specify the class of the
array using one of the following methods:

• Match the class of the input values with an asterisk ('*'). For example, to read
single-precision values into an array of class single, use the command:

mydata = fread(fid,'*single')

4 Low-Level File I/O

4-12

• Map the input values to a new class with the '=>' symbol. For example, to read
uint8 values into an uint16 array, use the command:

mydata = fread(fid,'uint8=>uint16')

For a complete list of precision descriptions, see the fread function reference page.

Reading Portions of a File

MATLAB low-level functions include several options for reading portions of binary data
in a file:

• Read a specified number of values at a time, as described in “Changing the
Dimensions of the Array” on page 4-11. Consider combining this method with “Testing
for End of File” on page 4-13.

• Move to a specific location in a file to begin reading. For more information, see
“Moving within a File” on page 4-14.

• Skip a certain number of bytes or bits after each element read. For an example, see
“Write and Read Complex Numbers” on page 4-28.

Testing for End of File

When you open a file, MATLAB creates a pointer to indicate the current position within
the file.

Note Opening an empty file does not move the file position indicator to the end of the file.
Read operations, and the fseek and frewind functions, move the file position indicator.

Use the feof function to check whether you have reached the end of a file. feof returns
a value of 1 when the file pointer is at the end of the file. Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat'; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)

 Import Binary Data with Low-Level I/O

4-13

 currData = fread(fid, segsize);
 if ~isempty(currData)
 disp('Current Data:');
 disp(currData);
 end
end

fclose(fid);

Moving within a File

To read or write selected portions of data, move the file position indicator to any location
in the file. For example, call fseek with the syntax

fseek(fid,offset,origin);

where:

• fid is the file identifier obtained from fopen.
• offset is a positive or negative offset value, specified in bytes.
• origin specifies the location from which to calculate the position:

'bof' Beginning of file
'cof' Current position in file
'eof' End of file

Alternatively, to move easily to the beginning of a file:

frewind(fid);

Use ftell to find the current position within a given file. ftell returns the number of
bytes from the beginning of the file.

For example, create a file five.bin:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses two
storage bytes in five.bin.

4 Low-Level File I/O

4-14

Reopen five.bin for reading:

fid = fopen('five.bin','r');

Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid,6,'bof');

Read the next element:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the current file
position indicator, call ftell:

position = ftell(fid)

position =
 8

To move the file position indicator back 4 bytes, call fseek again:

status = fseek(fid,-4,'cof');

Read the next value:

three = fread(fid,1,'short');

 Import Binary Data with Low-Level I/O

4-15

Reading Files Created on Other Systems
Different operating systems store information differently at the byte or bit level:

• Big-endian systems store bytes starting with the largest address in memory (that is,
they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte
ordering.

To read a file created on an opposite-endian system, specify the byte ordering used to
create the file. You can specify the ordering in the call to open the file, or in the call to
read the file.

For example, consider a file with double-precision values named little.bin, created on
a little-endian system. To read this file on a big-endian system, use one (or both) of the
following commands:

• Open the file with

fid = fopen('little.bin', 'r', 'l')
• Read the file with

mydata = fread(fid, 'double', 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian systems.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

The encoding scheme determines the number of bytes required to read or write char
values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use

4 Low-Level File I/O

4-16

up to 4 bytes. MATLAB automatically processes the required number of bytes for each
char value based on the specified encoding scheme. However, if you specify a uchar
precision, MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply
that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

 Import Binary Data with Low-Level I/O

4-17

Export to Text Data Files with Low-Level I/O

In this section...
“Write to Text Files Using fprintf” on page 4-18
“Append To or Overwrite Existing Text Files” on page 4-20
“Open Files with Different Character Encodings” on page 4-23

Write to Text Files Using fprintf

This example shows how to create text files, including combinations of numeric and
character data and nonrectangular files, using the low-level fprintf function.

fprintf is based on its namesake in the ANSI® Standard C Library. However,
MATLAB® uses a vectorized version of fprintf that writes data from an array with
minimal control loops.

Open the File

Create a sample matrix y with two rows.

x = 0:0.1:1;
y = [x; exp(x)];

Open a file for writing with fopen and obtain a file identifier, fileID. By default, fopen
opens a file for read-only access, so you must specify the permission to write or append,
such as 'w' or 'a'.

fileID = fopen('exptable.txt','w');

Write to the File

Write a title, followed by a blank line using the fprintf function. To move to a new line
in the file, use '\n'.

fprintf(fileID, 'Exponential Function\n\n');

Note: Some Windows® text editors, including Microsoft® Notepad, require a newline
character sequence of '\r\n' instead of '\n'. However, '\n' is sufficient for Microsoft
Word or WordPad.

4 Low-Level File I/O

4-18

Write the values in y in column order so that two values appear in each row of the file.
fprintf converts the numbers or characters in the array inputs to text according to your
specifications. Specify '%f' to print floating-point numbers.

fprintf(fileID,'%f %f\n',y);

Other common conversion specifiers include '%d' for integers or '%s' for characters.
fprintf reapplies the conversion information to cycle through all values of the input
arrays in column order.

Close the file using fclose when you finish writing.

fclose(fileID);

View the contents of the file using the type function.

type exptable.txt

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options

Optionally, include additional information in the call to fprintf to describe field width,
precision, or the order of the output values. For example, specify the field width and
number of digits to the right of the decimal point in the exponential table.

fileID = fopen('exptable_new.txt', 'w');

fprintf(fileID,'Exponential Function\n\n');
fprintf(fileID,'%6.2f %12.8f\n', y);

fclose(fileID);

 Export to Text Data Files with Low-Level I/O

4-19

View the contents of the file.

type exptable_new.txt

Exponential Function

 0.00 1.00000000
 0.10 1.10517092
 0.20 1.22140276
 0.30 1.34985881
 0.40 1.49182470
 0.50 1.64872127
 0.60 1.82211880
 0.70 2.01375271
 0.80 2.22554093
 0.90 2.45960311
 1.00 2.71828183

Append To or Overwrite Existing Text Files

This example shows how to append values to an existing text file, rewrite the entire file,
and overwrite only a portion of the file.

By default, fopen opens files with read access. To change the type of file access, use the
permission specifier in the call to fopen. Possible permission specifiers include:

• 'r' for reading
• 'w' for writing, discarding any existing contents of the file
• 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the
permission, such as 'w+' or 'a+'. If you open a file for both reading and writing, you
must call fseek or frewind between read and write operations.

Append to Existing Text File

Create a file named changing.txt.

fileID = fopen('changing.txt','w');
fmt = '%5d %5d %5d %5d\n';
fprintf(fileID,fmt, magic(4));
fclose(fileID);

4 Low-Level File I/O

4-20

The current contents of changing.txt are:

16 5 9 4

2 11 7 14

3 10 6 15

13 8 12 1

Open the file with permission to append.

fileID = fopen('changing.txt','a');

Write the values [55 55 55 55] at the end of file:

fprintf(fileID,fmt,[55 55 55 55]);

Close the file.

fclose(fileID);

View the contents of the file using the type function.

type changing.txt

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1
 55 55 55 55

Overwrite Entire Text File

A text file consists of a contiguous set of characters, including newline characters. To
replace a line of the file with a different number of characters, you must rewrite the line
that you want to change and all subsequent lines in the file.

Replace the first line of changing.txt with longer, descriptive text. Because the change
applies to the first line, rewrite the entire file.

replaceLine = 1;
numLines = 5;
newText = 'This file originally contained a magic square';

 Export to Text Data Files with Low-Level I/O

4-21

fileID = fopen('changing.txt','r');
mydata = cell(1, numLines);
for k = 1:numLines
 mydata{k} = fgetl(fileID);
end
fclose(fileID);

mydata{replaceLine} = newText;

fileID = fopen('changing.txt','w');
fprintf(fileID,'%s\n',mydata{:});
fclose(fileID);

View the contents of the file.
type changing.txt

This file originally contained a magic square
 2 11 7 14
 3 10 6 15
 13 8 12 1
 55 55 55 55

Overwrite Portion of Text File

Replace the third line of changing.txt with [33 33 33 33]. If you want to replace a
portion of a text file with exactly the same number of characters, you do not need to
rewrite any other lines in the file.
replaceLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

Move the file position marker to the correct line.
fileID = fopen('changing.txt','r+');
for k=1:(replaceLine-1);
 fgetl(fileID);
end

Call fseek between read and write operations.

fseek(fileID,0,'cof');

fprintf(fileID, myformat, newData);
fclose(fileID);

4 Low-Level File I/O

4-22

View the contents of the file.

type changing.txt

This file originally contained a magic square
 2 11 7 14
 33 33 33 33
 13 8 12 1
 55 55 55 55

Open Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply
that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

See Also
fopen | fprintf | fseek

More About
• “Formatting Text”
• “Write to Delimited Data Files” on page 2-28

 See Also

4-23

Export Binary Data with Low-Level I/O

In this section...
“Low-Level Functions for Exporting Data” on page 4-24
“Write Binary Data to a File” on page 4-24
“Overwrite or Append to an Existing Binary File” on page 4-25
“Create a File for Use on a Different System” on page 4-27
“Open Files with Different Character Encodings” on page 4-28
“Write and Read Complex Numbers” on page 4-28

Low-Level Functions for Exporting Data

Low-level file I/O functions allow the most direct control over reading or writing data to
a file. However, these functions require that you specify more detailed information about
your file than the easier-to-use high-level functions. For a complete list of high-level
functions and the file formats they support, see “Supported File Formats for Import and
Export” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

• fprintf, which writes formatted data to a text or ASCII file; that is, a file you can
view in a text editor or import into a spreadsheet. For more information, see “Export
to Text Data Files with Low-Level I/O” on page 4-18.

• fwrite, which writes a stream of binary data to a file. For more information, see
“Write Binary Data to a File” on page 4-24.

Note The low-level file I/O functions are based on functions in the ANSI Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.

Write Binary Data to a File

This example shows how to use the fwrite function to export a stream of binary data to
a file.

4 Low-Level File I/O

4-24

Create a file named nine.bin with the integers from 1 to 9. As with any of the low-level
I/O functions, before writing, open or create a file with fopen and obtain a file identifier.

fileID = fopen('nine.bin','w');
fwrite(fileID, [1:9]);

By default, fwrite writes values from an array in column order as 8-bit unsigned
integers (uint8).

When you finish processing a file, close it with fclose.

fclose(fileID);

Create a file with double-precision values. You must specify the precision of the values if
the values in your matrix are not 8-bit unsigned integers.

mydata = [pi 42 1/3];

fileID = fopen('double.bin','w');
fwrite(fileID,mydata,'double');
fclose(fileID);

Overwrite or Append to an Existing Binary File

This example shows how to overwrite a portion of an existing binary file and append
values to the file.

By default, fopen opens files with read access. To change the type of file access, use the
permission specifier in the call to fopen. Possible permission specifiers include:

• 'r' for reading
• 'w' for writing, discarding any existing contents of the file
• 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the
permission, such as 'w+' or 'a+'. If you open a file for both reading and writing, you
must call fseek or frewind between read and write operations.

Overwrite a Portion of an Existing File

Create a file named magic4.bin, specifying permission to write and read.

 Export Binary Data with Low-Level I/O

4-25

fileID = fopen('magic4.bin','w+');
fwrite(fileID,magic(4));

The original magic(4) matrix is:

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

The file contains 16 bytes, 1 for each value in the matrix.

Replace the values in the second column of the matrix with the vector, [44 44 44 44].
To do this, first seek to the fourth byte from the beginning of the file using fseek.

fseek(fileID,4,'bof');

Write the vector [44 44 44 44] using fwrite.

fwrite(fileID,[44 44 44 44]);

Read the results from the file into a 4-by-4 matrix.

frewind(fileID);
newdata = fread(fileID,[4,4])

newdata =

 16 44 3 13
 5 44 10 8
 9 44 6 12
 4 44 15 1

Close the file.

fclose(fileID);

Append Binary Data to Existing File

Append the values [55 55 55 55] to magic4.bin. First. open the file with permission
to append and read.

4 Low-Level File I/O

4-26

fileID = fopen('magic4.bin','a+');

Write values at end of file.

fwrite(fileID,[55 55 55 55]);

Read the results from the file into a 4-by-5 matrix.

frewind(fileID);
appended = fread(fileID, [4,5])

appended =

 16 44 3 13 55
 5 44 10 8 55
 9 44 6 12 55
 4 44 15 1 55

Close the file.

fclose(fileID);

Create a File for Use on a Different System
Different operating systems store information differently at the byte or bit level:

• Big-endian systems store bytes starting with the largest address in memory (that is,
they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte
ordering.

To create a file for use on an opposite-endian system, specify the byte ordering for the
target system. You can specify the ordering in the call to open the file, or in the call to
write the file.

For example, to create a file named myfile.bin on a big-endian system for use on a
little-endian system, use one (or both) of the following commands:

• Open the file with

fid = fopen('myfile.bin', 'w', 'l')

 Export Binary Data with Low-Level I/O

4-27

• Write the file with

fwrite(fid, mydata, precision, 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian systems.

Open Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

The encoding scheme determines the number of bytes required to read or write char
values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use
up to 4 bytes. MATLAB automatically processes the required number of bytes for each
char value based on the specified encoding scheme. However, if you specify a uchar
precision, MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply
that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

Write and Read Complex Numbers

This example shows how to write and read complex numbers in binary files.

4 Low-Level File I/O

4-28

The available precision values for fwrite do not explicitly support complex numbers. To
store complex numbers in a file, separate the real and imaginary components and write
them separately to the file. There are two ways to do this:

• Write all real components followed by all imaginary components
• Interleave the components

Use the approach that allows you to read the data in your target application.

Separate Real and Imaginary Components

Create an array that contains complex values.

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols))

z =
 Columns 1 through 4

 0.8147 + 0.7577i 0.0975 + 0.7060i 0.1576 + 0.8235i 0.1419 + 0.4387i
 0.9058 + 0.7431i 0.2785 + 0.0318i 0.9706 + 0.6948i 0.4218 + 0.3816i
 0.1270 + 0.3922i 0.5469 + 0.2769i 0.9572 + 0.3171i 0.9157 + 0.7655i
 0.9134 + 0.6555i 0.9575 + 0.0462i 0.4854 + 0.9502i 0.7922 + 0.7952i
 0.6324 + 0.1712i 0.9649 + 0.0971i 0.8003 + 0.0344i 0.9595 + 0.1869i

 Column 5

 0.6557 + 0.4898i
 0.0357 + 0.4456i
 0.8491 + 0.6463i
 0.9340 + 0.7094i
 0.6787 + 0.7547i

Separate the complex values into real and imaginary components.

z_real = real(z);
z_imag = imag(z);

Write All Real Components Follwed By Imaginary Components

Write all the real components, z_real, followed by all the imaginary components,
z_imag, to a file named complex_adj.bin.

 Export Binary Data with Low-Level I/O

4-29

adjacent = [z_real z_imag];

fileID = fopen('complex_adj.bin', 'w');
fwrite(fileID,adjacent,'double');
fclose(fileID);

Read the values from the file using fread.

fileID = fopen('complex_adj.bin');
same_real = fread(fileID, [nrows, ncols], 'double');
same_imag = fread(fileID, [nrows, ncols], 'double');
fclose(fileID);

same_z = complex(same_real, same_imag);

Interleave Real and Imaginary Components

An alternative approach is to interleave the real and imaginary components for each
value. fwrite writes values in column order, so build an array that combines the real
and imaginary parts by alternating rows.

First, preallocate the interleaved array.

interleaved = zeros(nrows*2, ncols);

Alternate real and imaginary data.

newrow = 1;
for row = 1:nrows
 interleaved(newrow,:) = z_real(row,:);
 interleaved(newrow + 1,:) = z_imag(row,:);
 newrow = newrow + 2;
end

Write the interleaved values to a file named complex_int.bin.

fileID = fopen('complex_int.bin','w');
fwrite(fileID, interleaved, 'double');
fclose(fileID);

Open the file for reading and read the real values from the file. The fourth input to
fread tells the function to skip the specified number of bytes after reading each value.

fileID = fopen('complex_int.bin');
same_real = fread(fileID, [nrows, ncols], 'double', 8);

4 Low-Level File I/O

4-30

Return to the first imaginary value in the file. Then, read all the imaginary data.

fseek(fileID, 8, 'bof');
same_imag = fread(fileID, [nrows, ncols], 'double', 8);
fclose(fileID);

same_z = complex(same_real, same_imag);

See Also
fopen | fread | fseek | fwrite

More About
• “Moving within a File” on page 4-14

 See Also

4-31

Images

• “Importing Images” on page 5-2
• “Exporting to Images” on page 5-5

5

Importing Images
To import data into the MATLAB workspace from a graphics file, use the imread
function. Using this function, you can import data from files in many standard file
formats, including the Tagged Image File Format (TIFF), Graphics Interchange Format
(GIF), Joint Photographic Experts Group (JPEG), and Portable Network Graphics (PNG)
formats. For a complete list of supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the MATLAB
workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of class
uint8. The dimensions of the array depend on the format of the data. For example,
imread uses three dimensions to represent RGB color images:

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading Image Data
and Metadata from TIFF Files” on page 5-3 for more information.

Getting Information about Image Files

If you have a file in a standard graphics format, use the imfinfo function to get
information about its contents. The imfinfo function returns a structure containing
information about the file. The fields in the structure vary with the file format, but
imfinfo always returns some basic information including the file name, last
modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts Group
(JPEG) format:

info = imfinfo('ngc6543a.jpg')

info =

5 Images

5-2

 Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'
 FileModDate: '01-Oct-1996 16:19:44'
 FileSize: 27387
 Format: 'jpg'
 FormatVersion: ''
 Width: 600
 Height: 650
 BitDepth: 24
 ColorType: 'truecolor'
 FormatSignature: ''
 NumberOfSamples: 3
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =...'}

Reading Image Data and Metadata from TIFF Files

While you can use imread to import image data and metadata from TIFF files, the
function does have some limitations. For example, a TIFF file can contain multiple
images and each images can have multiple subimages. While you can read all the images
from a multi-image TIFF file with imread, you cannot access the subimages. Using the
Tiff object, you can read image data, metadata, and subimages from a TIFF file. When
you construct a Tiff object, it represents your connection with a TIFF file and provides
access to many of the routines in the LibTIFF library.

The following section provides a step-by-step example of using Tiff object methods and
properties to read subimages from a TIFF file. To get the most out of the Tiff object, you
must be familiar with the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

Reading Subimages from a TIFF File

A TIFF file can contain one or more image file directories (IFD). Each IFD contains
image data and the metadata (tags) associated with the image. Each IFD can contain one
or more subIFDs, which can also contain image data and metadata. These subimages are
typically reduced-resolution (thumbnail) versions of the image data in the IFD containing
the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage from the
SubIFD tag. The SubIFD tag contains an array of byte offsets that point to the

 Importing Images

5-3

http://www.simplesystems.org/libtiff/

subimages. You can then pass the address of the subIFD to the setSubDirectory
method to make the subIFD the current IFD. Most Tiff object methods operate on the
current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff object
constructor. This example uses the TIFF file created in “Creating Subdirectories in a
TIFF File” on page 5-9, which contains one IFD directory with two subIFDs. The
Tiff constructor opens the TIFF file, and makes the first subIFD in the file the
current IFD:

t = Tiff('my_subimage_file.tif','r');
2 Retrieve the locations of subIFDs associated with the current IFD. Use the getTag

method to get the value of the SubIFD tag. This returns an array of byte offsets that
specify the location of subIFDs:

offsets = t.getTag('SubIFD')
3 Navigate to the first subIFD using the setSubDirectory method. Specify the byte

offset of the subIFD as an argument. This call makes the subIFD the current IFD:

t.setSubDirectory(offsets(1));
4 Read the image data from the current IFD (the first subIFD) as you would with any

other IFD in the file:

subimage_one = t.read();
5 View the first subimage:

imagesc(subimage_one)
6 To view the second subimage, call the setSubDirectory method again, specifying

the byte offset of the second subIFD:

t.setSubDirectory(offsets(2));
7 Read the image data from the current IFD (the second subIFD) as you would with

any other IFD in the file:

subimage_two = t.read();
8 View the second subimage:

imagesc(subimage_two)
9 Close the Tiff object.

t.close();

5 Images

5-4

Exporting to Images
To export data from the MATLAB workspace using one of the standard graphics file
formats, use the imwrite function. Using this function, you can export data in formats
such as the Tagged Image File Format (TIFF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG). For a complete list of supported formats,
see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from the
MATLAB workspace into a file in TIFF format. The class of the output image written to
the file depends on the format specified. For most formats, if the input array is of class
uint8, imwrite outputs the data as 8-bit values. See the imwrite reference page for
details.

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats. For
example, with TIFF file format, you can specify the type of compression MATLAB uses to
store the image. See the imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see “Exporting Image
Data and Metadata to TIFF Files” on page 5-5 for more information.

Exporting Image Data and Metadata to TIFF Files

While you can use imwrite to export image data and metadata (tags) to Tagged Image
File Format (TIFF) files, the function does have some limitations. For example, when you
want to modify image data or metadata in the file, you must write the all the data to the
file. You cannot write only the updated portion. Using the Tiff object, you can write
portions of the image data and modify or add individual tags to a TIFF file. When you
construct a Tiff object, it represents your connection with a TIFF file and provides
access to many of the routines in the LibTIFF library.

 Exporting to Images

5-5

The following sections provide step-by-step examples of using Tiff object methods and
properties to perform some common tasks with TIFF files. To get the most out of the
Tiff object, you must be familiar with the TIFF specification and technical notes. View
this documentation at LibTIFF - TIFF Library and Utilities.

Creating a New TIFF File

1 Create some image data. This example reads image data from a JPEG file included
with MATLAB:

imgdata = imread('ngc6543a.jpg');
2 Create a new TIFF file by constructing a Tiff object, specifying the name of the new

file as an argument. To create a file you must specify either write mode ('w') or
append mode ('a'):

t = Tiff('myfile.tif','w');

When you create a new TIFF file, the Tiff constructor creates a file containing an
image file directory (IFD). A TIFF file uses this IFD to organize all the data and
metadata associated with a particular image. A TIFF file can contain multiple IFDs.
The Tiff object makes the IFD it creates the current IFD. Tiff object methods
operate on the current IFD. You can navigate among IFDs in a TIFF file and specify
which IFD is the current IFD using Tiff object methods.

3 Set required TIFF tags using the setTag method of the Tiff object. These required
tags specify information about the image, such as its length and width. To break the
image data into strips, specify a value for the RowsPerStrip tag. To break the
image data into tiles, specify values for the TileWidth and TileLength tags. The
example creates a structure that contains tag names and values and passes that to
setTag. You also can set each tag individually.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)
tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8
tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct.Software = 'MATLAB'
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting
Tag Values” on page 5-11. For example, the Tiff object supports properties that

5 Images

5-6

http://www.simplesystems.org/libtiff/

you can use to set the values of certain properties. This example uses the Tiff object
PlanarConfiguration property to specify the correct value for the chunky
configuration: Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write method
of the Tiff object.

t.write(imgdata);

If you wanted to put multiple images into your file, call the writeDirectory
method right after performing this write operation. The writeDirectory method
sets up a new image file directory in the file and makes this new directory the
current directory.

5 Close your connection to the file by closing the Tiff object:

t.close();
6 Test that you created a valid TIFF file by using the imread function to read the file,

and then display the image:
imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not compressed.

1 Open an existing TIFF file for modification by creating a Tiff object. This example
uses the file created in “Creating a New TIFF File” on page 5-6. The Tiff
constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');
2 Generate some data to write to a strip in the image. This example creates a three-

dimensional array of zeros that is the size of a strip. The code uses the number of
rows in a strip, the width of the image, and the number of samples per pixel as
dimensions. The array is an array of uint8 values.

width = t.getTag('ImageWidth');
height = t.getTag('RowsPerStrip');
numSamples = t.getTag('SamplesPerPixel');
stripData = zeros(height,width,numSamples,'uint8');

If the image data had a tiled layout, you would use the TileWidth and TileLength
tags to specify the dimensions.

 Exporting to Images

5-7

3 Write the data to a strip in the file using the writeEncodedStrip method. Specify
the index number that identifies the strip you want to modify. The example picks
strip 18 because it is easier to see the change in the image.

t.writeEncodedStrip(18, stripData);

If the image had a tiled layout, you would use the writeEncodedTile method to
modify the tile.

4 Close your connection to the file by closing the Tiff object.

t.close();
5 Test that you modified a strip of the image in the TIFF file by using the imread

function to read the file, and then display the image.

modified_imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

Note the black strip across the middle of the image.

Modifying TIFF File Metadata (Tags)

1 Open an existing TIFF file for modification using the Tiff object. This example uses
the file created in “Creating a New TIFF File” on page 5-6. The Tiff constructor
returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');
2 Verify that the file does not contain the Artist tag, using the getTag method. This

code should issue an error message saying that it was unable to retrieve the tag.

artist_value = t.getTag('Artist');
3 Add the Artist tag using the setTag method.

t.setTag('Artist','Pablo Picasso');
4 Write the new tag data to the TIFF file using the rewriteDirectory method. Use

the rewriteDirectory method when modifying existing metadata in a file or
adding new metadata to a file.

t.rewriteDirectory();
5 Close your connection to the file by closing the Tiff object.

t.close();
6 Test your work by reopening the TIFF file and getting the value of the Artist tag,

using the getTag method.

5 Images

5-8

t = Tiff('myfile.tif', 'r');

t.getTag('Artist')

ans =

Pablo Picasso

t.close();

Creating Subdirectories in a TIFF File

1 Create some image data. This example reads image data from a JPEG file included
with MATLAB. The example then creates two reduced-resolution (thumbnail)
versions of the image data.

imgdata = imread('ngc6543a.jpg');
%
% Reduce number of pixels by a half.
img_half = imgdata(1:2:end,1:2:end,:);
%
% Reduce number of pixels by a third.
img_third = imgdata(1:3:end,1:3:end,:);

2 Create a new TIFF file by constructing a Tiff object and specifying the name of the
new file as an argument. To create a file you must specify either write mode ('w') or
append mode ('a'). The Tiff constructor returns a handle to a Tiff object.

t = Tiff('my_subimage_file.tif','w');
3 Set required TIFF tags using the setTag method of the Tiff object. These required

tags specify information about the image, such as its length and width. To break the
image data into strips, specify a value for the RowsPerStrip tag. To break the
image data into tiles, use the TileWidth and TileLength tags. The example
creates a structure that contains tag names and values and passes that to setTag.
You can also set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number of
subdirectories you want to create. Note that the number you specify isn't the value of
the SubIFD tag. The number tells the Tiff software to create a SubIFD that points
to two subdirectories. The actual value of the SubIFD tag will be the byte offsets of
the two subdirectories.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)

 Exporting to Images

5-9

tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8
tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct.Software = 'MATLAB'
tagstruct.SubIFD = 2 % required to create subdirectories
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting
Tag Values” on page 5-11. For example, the Tiff object supports properties that
you can use to set the values of certain properties. This example uses the Tiff object
PlanarConfiguration property to specify the correct value for the chunky
configuration: Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write method
of the Tiff object.

t.write(imgdata);
5 Set up the first subdirectory by calling the writeDirectory method. The

writeDirectory method sets up the subdirectory and make the new directory the
current directory. Because you specified that you wanted to create two
subdirectories, writeDirectory sets up a subdirectory.

t.writeDirectory();
6 Set required tags, just as you did for the regular directory. According to the LibTIFF

API, a subdirectory cannot contain a SubIFD tag.

tagstruct2.ImageLength = size(img_half,1)
tagstruct2.ImageWidth = size(img_half,2)
tagstruct2.Photometric = Tiff.Photometric.RGB
tagstruct2.BitsPerSample = 8
tagstruct2.SamplesPerPixel = 3
tagstruct2.RowsPerStrip = 16
tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct2.Software = 'MATLAB'
t.setTag(tagstruct2)

7 Write the image data and metadata to the subdirectory using the write method of
the Tiff object.

t.write(img_half);
8 Set up the second subdirectory by calling the writeDirectory method. The

writeDirectory method sets up the subdirectory and makes it the current
directory.

5 Images

5-10

t.writeDirectory();
9 Set required tags, just as you would for any directory. According to the LibTIFF API,

a subdirectory cannot contain a SubIFD tag.

tagstruct3.ImageLength = size(img_third,1)
tagstruct3.ImageWidth = size(img_third,2)
tagstruct3.Photometric = Tiff.Photometric.RGB
tagstruct3.BitsPerSample = 8
tagstruct3.SamplesPerPixel = 3
tagstruct3.RowsPerStrip = 16
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct3.Software = 'MATLAB'
t.setTag(tagstruct3)

10 Write the image data and metadata to the subdirectory using the write method of
the Tiff object:

t.write(img_third);
11 Close your connection to the file by closing the Tiff object:

t.close();

Setting Tag Values

The following table lists all the TIFF tags that the Tiff object supports and includes
information about their MATLAB class and size. For certain tags, the table also indicates
the set of values that the Tiff object supports, which is a subset of all the possible
values defined by the TIFF specification. You can use Tiff object properties to specify
the supported values for these tags. For example, use Tiff.Compression.JPEG to
specify JPEG compression. See the Tiff class reference page for a full list of properties.

 Exporting to Images

5-11

Table 1: Supported TIFF Tags

TIFF Tag Class Size Supported Values Notes
Artist char 1xN
BitsPerSample double 1x1 1,8,16,32,64 See Table 2 on page

5-17
ColorMap double 256x3 Values should be

normalized
between 0–1.
Stored internally as
uint16 values.

Photometric must
be Palette

Compression double 1x1 None: 1
CCITTRLE: 2
CCITTFax3: 3
CCITTFax4: 4
LZW: 5
JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8

See Table 3 on page
5-18.

Copyright char 1xN
DateTime char 1x19 Return value is

padded to 19 chars
if required.

DocumentName char 1xN
DotRange double 1x2 Photometric must

be Separated
ExtraSamples double 1xN Unspecified: 0

AssociatedAlpha
: 1
UnassociatedAlp
ha: 2

See Table 4 on page
5-19.

FillOrder double 1x1
GeoAsciiParamsTag char 1xN

5 Images

5-12

TIFF Tag Class Size Supported Values Notes
GeoDoubleParamsTag double 1xN
GeoKeyDirectoryTag double Nx4
Group3Options double 1x1 Compression must

be CCITTFax3
Group4Options double 1x1 Compression must

be CCITTFax4
HalfToneHints double 1x2
HostComputer char 1xn
ICCProfile uint8 1xn
ImageDescription char 1xn
ImageLength double 1x1
ImageWidth double 1x1
InkNames char

cell
array

1x
NumInk
s

 Photometric must
be Separated

InkSet double 1x1 CMYK: 1
MultiInk: 2

Photometric must
be Separated

JPEGQuality double 1x1 A value between 1
and 100

Make char 1xn
MaxSampleValue double 1x1 0–65,535
MinSampleValue double 1x1 0–65,535
Model char 1xN
ModelPixelScaleTag double 1x3
ModelTiepointTag double Nx6
ModelTransformationMatrixTa
g

double 1x16

NumberOfInks double 1x1 Must be equal to
SamplesPerPixel

 Exporting to Images

5-13

TIFF Tag Class Size Supported Values Notes
Orientation double 1x1 TopLeft: 1

TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8

PageName char 1xN
PageNumber double 1x2
Photometric double 1x1 MinIsWhite: 0

MinIsBlack: 1
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10

See Table 2 on page
5-17.

Photoshop uint8 1xN
PlanarConfiguration double 1x1 Chunky: 1

Separate: 2

PrimaryChromaticities double 1x6
ReferenceBlackWhite double 1x6
ResolutionUnit double 1x1
RICHTIFFIPTC uint8 1xN
RowsPerStrip double 1x1
SampleFormat double 1x1 Uint: 1

Int: 2
IEEEFP: 3

See Table 2 on page
5-16

SamplesPerPixel double 1x1

5 Images

5-14

TIFF Tag Class Size Supported Values Notes
SMaxSampleValue double 1x1 Range of MATLAB

data type specified
for Image data

SMinSampleValue double 1x1 Range of MATLAB
data type specified
for Image data

Software char 1xN
StripByteCounts double 1xN Read-only
StripOffsets double 1xN Read-only
SubFileType double 1x1 Default : 0

ReducedImage: 1
Page: 2
Mask: 4

SubIFD double 1x1
TargetPrinter char 1xN
Thresholding double 1x1 BiLevel: 1

HalfTone: 2
ErrorDiffuse: 3

Photometric can be
either: MinIsWhite
MinIsBlack

TileByteCounts double 1xN Read-only
TileLength double 1x1 Must be a multiple

of 16

TileOffsets double 1xN Read-only
TileWidth double 1x1 Must be a multiple

of 16

TransferFunction double See
note1

Each value should
be within 0–2^16-1

SamplePerPixel
can be either 1 or 3

 Exporting to Images

5-15

TIFF Tag Class Size Supported Values Notes
WhitePoint double 1x2 Photometric can be:

RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

XMP char 1xn N>5
XPostion double 1x1
XResolution double 1x1
YCbCrCoefficents double 1x3 Photometric must

be YCbCr
YCbCrPositioning double 1x1 Centered: 1

Cosited: 2
Photometric must
be YCbCr

YCbCrSubSampling double 1x2 Photometric must
be YCbCr

YPosition double 1x1
YResolution double 1x1
ZipQuality double 1x1 Value between 1

and 9

1Size is 1x2^BitsPerSample or3x2^BitsPerSample.
Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type
1 Uint logical
8 Uint, Int uint8, int8
16 Uint, Int uint16, int16
32 Uint, Int, IEEEFP uint32, int32, single
64 IEEEFP double

5 Images

5-16

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

 BitsPerSample Values
Photometric Values 1 8 16 32 64
MinIsWhite Uint Uint/Int Uint

Int
Uint
Int
IEEEFP

IEEEFP

MinIsBlack Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

RGB Uint Uint Uint
IEEEFP

IEEEFP

Pallette Uint Uint
Mask Uint
Separated Uint Uint Uint

IEEEFP
IEEEFP

YCbCr Uint Uint Uint
IEEEFP

IEEEFP

CIELab Uint Uint
ICCLab Uint Uint
ITULab Uint Uint

 Exporting to Images

5-17

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

 BitsPerSample Values
Compression
Values

1 8 16 32 64

None Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

CCITTRLE Uint
CCITTFax3 Uint
CCITTFax4 Uint
LZW Uint Uint

Int
Uint
Int

Uint
Int
IEEEFP

IEEEFP

JPEG Uint
Int

CCITTRLEW Uint
PackBits Uint Uint

Int
Uint
Int

Uint
Int
IEEEFP

IEEEFP

Deflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

AdobeDeflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

5 Images

5-18

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel1

MinIsWhite 1+
MinIsBlack 1+
RGB 3+
Pallette 1
Mask 1
Separated 1+
YCbCr 3
CIELab 3+
ICCLab 3+
ITULab 3+

1 When you specify more than the expected number of samples per pixel (n+), you must
set the ExtraSamples tag accordingly.

 Exporting to Images

5-19

Scientific Data

• “Import CDF Files Using Low-Level Functions” on page 6-2
• “Represent CDF Time Values” on page 6-5
• “Import CDF Files Using High-Level Functions” on page 6-6
• “Export to CDF Files” on page 6-10
• “Map NetCDF API Syntax to MATLAB Syntax” on page 6-13
• “Import NetCDF Files and OPeNDAP Data” on page 6-15
• “Resolve Errors Reading OPeNDAP Data” on page 6-23
• “Export to NetCDF Files” on page 6-24
• “Importing Flexible Image Transport System (FITS) Files” on page 6-31
• “Importing HDF5 Files” on page 6-33
• “Exporting to HDF5 Files” on page 6-41
• “Working with Non-ASCII Characters in HDF5 Files” on page 6-50
• “Import HDF4 Files Programatically” on page 6-54
• “Map HDF4 to MATLAB Syntax” on page 6-58
• “Import HDF4 Files Using Low-Level Functions” on page 6-60
• “Import HDF4 Files Interactively” on page 6-64
• “About HDF4 and HDF-EOS” on page 6-80
• “Export to HDF4 Files” on page 6-81

6

Import CDF Files Using Low-Level Functions
This example shows how to use low-level functions to read data from a CDF file. The
MATLAB® low-level CDF functions correspond to routines in the CDF C API library. To
use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF
C interface.

Open CDF File

Open the sample CDF File, example.cdf.

cdfid = cdflib.open('example.cdf');

Get Information About File Contents

Use cdflib.inquire to get information about the number of variables in the file, the
number of global attributes, and the number of attributes with variable scope.

info = cdflib.inquire(cdfid)

info = struct with fields:
 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: 23
 numVars: 6
 numvAttrs: 1
 numgAttrs: 3

Get Information About Variables

Use cdflib.inqurieVar to get information about the individual variables in the file.
Variable ID numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info = struct with fields:
 name: 'Time'
 datatype: 'cdf_epoch'
 numElements: 1
 dims: []
 recVariance: 1
 dimVariance: []

6 Scientific Data

6-2

info = cdflib.inquireVar(cdfid,1)

info = struct with fields:
 name: 'Longitude'
 datatype: 'cdf_int1'
 numElements: 1
 dims: [2 2]
 recVariance: 0
 dimVariance: [1 0]

Read Variable Data Into Workspace

Read the data in a variable into the MATLAB workspace. The first variable contains
CDF Epoch time values. The low-level interface returns these as double values.

data_time = cdflib.getVarRecordData(cdfid,0,0)

data_time = 6.3146e+13

Convert the time value to a date vector.

timeVec = cdflib.epochBreakdown(data_time)

timeVec =

 2001
 1
 1
 0
 0
 0
 0

Read Global Attribute From File

Determine which attributes in the CDF file are global.

info = cdflib.inquireAttr(cdfid,0)

info = struct with fields:
 name: 'SampleAttribute'
 scope: 'GLOBAL_SCOPE'
 maxgEntry: 4

 Import CDF Files Using Low-Level Functions

6-3

 maxEntry: -1

Read the value of the attribute. You must use the cdflib.getAttrgEntry function for
global attributes.

value = cdflib.getAttrgEntry(cdfid,0,0)

value =
'This is a sample entry.'

Close CDF File

Use cdflib.close to close the CDF file.

cdflib.close(cdfid);

See Also
cdflib | cdfread

External Websites
• CDF website

6 Scientific Data

6-4

http://cdf.gsfc.nasa.gov/

Represent CDF Time Values
This example shows how to extract date information from a CDF epoch object. CDF
represents time differently than MATLAB®. CDF represents date and time as the
number of milliseconds since 1-Jan-0000. This is called an epoch in CDF terminology. To
represent CDF dates, MATLAB uses an object called a CDF epoch object. MATLAB also
can represent a date and time as a datetime value or as a serial date number, which is
the number of days since 0-Jan-0000. To access the time information in a CDF object,
convert to one of these other representations.

Read the sample CDF file, example.cdf.

data = cdfread('example.cdf');
whos

 Name Size Bytes Class Attributes

 data 24x6 25248 cell

cdfread returns a cell array.

Extract the date information from the first CDF epoch object returned in the cell array,
data, using the todatenum function.

m_datenum = todatenum(data{1})

m_datenum = 730852

Convert the MATLAB serial date number to a datetime value.

m_datetime = datetime(m_datenum,'ConvertFrom','datenum')

m_datetime = datetime
 01-Jan-2001 00:00:00

See Also
cdfread | datetime | todatenum

 Represent CDF Time Values

6-5

Import CDF Files Using High-Level Functions
This example shows how to use high-level MATLAB® functions to import the sample
CDF file, example.cdf. High-level functions provide a simpler interface to accessing
CDF files.

Get Information About Contents of CDF File

Get information about the contents of a CDF file using the cdfinfo function. Because
cdfinfo creates temporary files, ensure that your current folder is writable before using
the function.

info = cdfinfo('example.cdf')

info =

 struct with fields:

 Filename: 'example.cdf'
 FileModDate: '10-May-2010 21:35:00'
 FileSize: 1310
 Format: 'CDF'
 FormatVersion: '2.7.0'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {6x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

cdfinfo returns a structure containing general information about the file and detailed
information about the variables and attributes in the file. In this example, the
Variables field indicates the number of variables in the file.

View the contents of the Variables field.

vars = info.Variables

vars =

 6x6 cell array

6 Scientific Data

6-6

 Columns 1 through 5

 {'Time' } {1x2 double} {[24]} {'epoch' } {'T/' }
 {'Longitude' } {1x2 double} {[1]} {'int8' } {'F/FT' }
 {'Latitude' } {1x2 double} {[1]} {'int8' } {'F/TF' }
 {'Data' } {1x3 double} {[1]} {'double'} {'T/TTT' }
 {'multidimensional'} {1x4 double} {[1]} {'uint8' } {'T/TTTT'}
 {'Temperature' } {1x2 double} {[10]} {'int16' } {'T/TT' }

 Column 6

 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}
 {'Full'}

The first variable, Time, consists of 24 records containing CDF epoch data. The next two
variables, Longitude and Latitude, each have only one associated record containing
int8 data.

Read All Data from CDF File

Use the cdfread function to read all of the data in the CDF file.

data = cdfread('example.cdf');
whos data

 Name Size Bytes Class Attributes

 data 24x6 25248 cell

cdfread returns the data in a cell array. The columns of data correspond to the
variables. The rows correspond to the records associated with a variable.

Read Data from Specific Variables

Read only the Longitude and Latitude variables from the CDF file. To read the data
associated with particular variables, use the 'Variable' parameter. Specify the names
of the variables in a cell array of character vectors. Variable names are case sensitive.

 Import CDF Files Using High-Level Functions

6-7

var_long_lat = cdfread('example.cdf','Variable',{'Longitude','Latitude'});
whos var_long_lat

 Name Size Bytes Class Attributes

 var_long_lat 1x2 232 cell

Combine Records to Speed Up Read Operations

By default, cdfread creates a cell array with a separate element for every variable and
every record in each variable, padding the records dimension to create a rectangular cell
array. When working with large data sets, you can speed up read operations by
specifying the 'CombineRecords' parameter to reduce the number of elements in the
cell array that cdfread returns. When you set the 'CombineRecords' parameter to
true, the cdfread function creates a separate element for each variable but saves time
by putting all the records associated with a variable in a single cell array element.
data_combined = cdfread('example.cdf','CombineRecords',true);

Compare the sizes of the cell arrays returned by cdfread.

whos data*

 Name Size Bytes Class Attributes

 data 24x6 25248 cell
 data_combined 1x6 8320 cell

Reading all the data from the example file without the CombineRecords parameter
returns a 24-by-6 cell array, where the columns represent variables and the rows
represent the records for each variable. Reading the data from the same file with
'CombineRecords' set to true returns a 1-by-6 cell array.

When combining records, the dimensions of the data in the cell change. In this example,
the Time variable has 24 records, each of which is a scalar value. In the data_combined
cell array, the combined element contains a 24-by-1 vector of values.

Read CDF Epoch Values as Serial Date Numbers

By default, cdfread creates a MATLAB cdfepoch object for each CDF epoch value in
the file. Speed up read operations by setting the 'ConvertEpochToDatenum' name-value
pair argument to true, to return CDF epoch values as MATLAB serial date numbers.

6 Scientific Data

6-8

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);
whos data*

 Name Size Bytes Class Attributes

 data 24x6 25248 cell
 data_combined 1x6 8320 cell
 data_datenums 24x6 21024 cell

See Also
cdfinfo | cdfread

External Websites
• CDF website

 See Also

6-9

http://cdf.gsfc.nasa.gov/

Export to CDF Files
This example shows how to export data to a CDF file using MATLAB® CDF low-level
functions. The MATLAB functions correspond to routines in the CDF C API library.

To use the MATLAB CDF low-level functions effectively, you must be familiar with the
CDF C interface. Also, CDF files do not support non-ASCII encoded inputs. Therefore,
variable names, attributes names, variable values, and attribute values must have 7-bit
ASCII encoding.

Create New CDF File

Create a new CDF file named my_file.cdf using cdflib.create. This function
corresponds to the CDF library C API routine, CDFcreateCDF.

cdfid = cdflib.create('my_file.cdf');

cdflib.create returns a file identifier, cdfid.

Create Variables in CDF File

Create variables named Time and Latitude using cdflib.createVar. This function
corresponds to the CDF library C API routine, CDFcreatezVar.

time_id = cdflib.createVar(cdfid,'Time','cdf_int4',1,[],true,[]);
lat_id = cdflib.createVar(cdfid,'Latitude','cdf_int2',1,181,true,true);

cdflib.createVar returns a numeric identifier for each variable.

Create a variable named Image.

dimSizes = [20 10];
image_id = cdflib.createVar(cdfid,'Image','cdf_int4',1,...
 dimSizes,true,[true true]);

Write to Variables

Write data to the first and second records of the Time variable. Record numbers are zero-
based. The cdflib.putVarRecordData function corresponds to the CDF library C API
routine, CDFputzVarRecordData.

cdflib.putVarRecordData(cdfid,time_id,0,int32(23));
cdflib.putVarRecordData(cdfid,time_id,1,int32(24));

6 Scientific Data

6-10

Write data to the Latitude variable.

data = int16([-90:90]);
recspec = [0 1 1];
dimspec = { 0 181 1 };
cdflib.hyperPutVarData(cdfid,lat_id,recspec,dimspec,data);

Write data to the Image variable.

recspec = [0 3 1];
dimspec = { [0 0], [20 10], [1 1] };
data = reshape(int32([0:599]), [20 10 3]);
cdflib.hyperPutVarData(cdfid,image_id,recspec,dimspec,data);

Write to Global Attribute

Create a global attribute named TITLE using cdflib.createAttr. This function
corresponds to the CDF library C API routine, CDFcreateAttr.

titleAttrNum = cdflib.createAttr(cdfid,'TITLE','global_scope');

cdflib.createAttr returns a numeric identifier for the attribute. Attribute numbers
are zero-based.

Write values to entries in the global attribute.

cdflib.putAttrEntry(cdfid,titleAttrNum,0,'CDF_CHAR','cdf Title');
cdflib.putAttrEntry(cdfid,titleAttrNum,1,'CDF_CHAR','Author');

Write to Attributes Associated with Variables

Create attributes associated with variables in the CDF file.

fieldAttrNum = cdflib.createAttr(cdfid,'FIELDNAM','variable_scope');
unitsAttrNum = cdflib.createAttr(cdfid,'UNITS','variable_scope');

Write to attributes of the Time variable.

cdflib.putAttrEntry(cdfid,fieldAttrNum,time_id,...
 'CDF_CHAR','Time of observation');
cdflib.putAttrEntry(cdfid,unitsAttrNum,time_id,...
 'CDF_CHAR','Hours');

 Export to CDF Files

6-11

Get Information About CDF File

Get information about the file using cdflib.inquire. This function corresponds to the
CDF library C API routines, CDFinquireCDF and CDFgetNumgAttributes.

info = cdflib.inquire(cdfid)

info = struct with fields:
 encoding: 'IBMPC_ENCODING'
 majority: 'ROW_MAJOR'
 maxRec: 2
 numVars: 3
 numvAttrs: 2
 numgAttrs: 1

cdflib.inquire returns a structure array that includes information about the data
encoding and the number of variables and attributes in the file.

Close CDF File

Close the CDF File using cdflib.close. This function corresponds to the CDF library
C API routine, CDFcloseCDF. You must close a CDF to guarantee that all modifications
you made since opening the CDF are written to the file.

cdflib.close(cdfid);

See Also
cdflib

External Websites
• CDF website

6 Scientific Data

6-12

http://cdf.gsfc.nasa.gov/

Map NetCDF API Syntax to MATLAB Syntax
MATLAB provides access to the routines in the NetCDF C library through a set of low-
level functions that are grouped into a package called netcdf. Use the functions in this
package to read and write data to and from NetCDF files. To use the MATLAB NetCDF
functions effectively, you should be familiar with the NetCDF C interface.

Usually, the MATLAB functions in the netcdf package correspond directly to routines
in the NetCDF C library. For example, the MATLAB function netcdf.open corresponds
to the NetCDF library routine nc_open. In some cases, one MATLAB function
corresponds to a group of NetCDF library functions. For example, instead of creating
MATLAB versions of every NetCDF library nc_put_att_type function, where type
represents a data type, MATLAB uses one function, netcdf.putAtt, to handle all
supported data types.

To call one of the functions in the netcdf package, you must prefix the function name
with the package name. The syntax of the MATLAB functions is similar to the NetCDF
library routines. However, the NetCDF C library routines use input parameters to return
data, while their MATLAB counterparts use one or more return values. For example, this
is the function signature of the nc_open routine in the NetCDF library:

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

The NetCDF file identifier is returned in the ncidp argument.

This is the signature of the corresponding MATLAB function, netcdf.open:

ncid = netcdf.open(filename, mode)

Like its NetCDF C library counterpart, the MATLAB NetCDF function accepts a file
name and a constant that specifies the access mode. However, that the MATLAB
netcdf.open function returns the file identifier, ncid, as a return value.

The MATLAB NetCDF functions automatically choose the MATLAB class that best
matches the NetCDF data type. This table shows the default mapping.
NetCDF Data Type MATLAB Class
'NC_BYTE' int8 or uint8a

'NC_CHAR' char
'NC_SHORT' int16

 Map NetCDF API Syntax to MATLAB Syntax

6-13

NetCDF Data Type MATLAB Class
'NC_INT' int32
'NC_FLOAT' single
'NC_DOUBLE' double

a. NetCDF interprets byte data as either signed or unsigned.

You can override the default and specify the class of the return data by using an optional
argument to the netcdf.getVar function.

See Also
netcdf

External Websites
• NetCDF website

6 Scientific Data

6-14

http://www.unidata.ucar.edu/software/netcdf/

Import NetCDF Files and OPeNDAP Data
In this section...
“MATLAB NetCDF Capabilities” on page 6-15
“Read from NetCDF File Using High-Level Functions” on page 6-15
“Find All Unlimited Dimensions in NetCDF File” on page 6-18
“Read from NetCDF File Using Low-Level Functions” on page 6-19

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. NetCDF is used by a wide range of engineering and scientific
fields that want a standard way to store data so that it can be shared.

MATLAB high-level functions simplify the process of importing data from a NetCDF file
or an OPeNDAP NetCDF data source. MATLAB low-level functions enable more control
over the importing process, by providing access to the routines in the NetCDF C library.
To use the low-level functions effectively, you should be familiar with the NetCDF C
Interface. The NetCDF documentation is available at the Unidata website.

Note For information about importing Common Data Format (CDF) files, which have a
separate, incompatible format, see “Import CDF Files Using Low-Level Functions” on
page 6-2.

Read from NetCDF File Using High-Level Functions

This example shows how to display and read the contents of a NetCDF file, using high-
level functions.

Display the contents of the sample NetCDF file, example.nc.

ncdisp('example.nc')

Source:
 \\matlabroot\toolbox\matlab\demos\example.nc
Format:

 Import NetCDF Files and OPeNDAP Data

6-15

http://www.unidata.ucar.edu/software/netcdf/

 netcdf4
Global Attributes:
 creation_date = '29-Mar-2010'
Dimensions:
 x = 50
 y = 50
 z = 5
Variables:
 avagadros_number
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 description = 'this variable has no dimensions'
 temperature
 Size: 50x1
 Dimensions: x
 Datatype: int16
 Attributes:
 scale_factor = 1.8
 add_offset = 32
 units = 'degrees_fahrenheight'
 peaks
 Size: 50x50
 Dimensions: x,y
 Datatype: int16
 Attributes:
 description = 'z = peaks(50);'
Groups:
 /grid1/
 Attributes:
 description = 'This is a group attribute.'
 Dimensions:
 x = 360
 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

 /grid2/
 Attributes:

6 Scientific Data

6-16

 description = 'This is another group attribute.'
 Dimensions:
 x = 360
 y = 180
 time = 0 (UNLIMITED)
 Variables:
 temp
 Size: []
 Dimensions: x,y,time
 Datatype: int16

ncdisp displays all the groups, dimensions, and variable definitions in the file.
Unlimited dimensions are identified with the label, UNLIMITED.

Read data from the peaks variable.

peaksData = ncread('example.nc','peaks');

Display information about the peaksData output.

whos peaksData

 Name Size Bytes Class Attributes

 peaksData 50x50 5000 int16

Read the description attribute associated with the variable.

peaksDesc = ncreadatt('example.nc','peaks','description')

peaksDesc =

z = peaks(50);

Create a three-dimensional surface plot of the variable data. Use the value of the
description attribute as the title of the figure.

surf(double(peaksData))
title(peaksDesc);

Read the description attribute associated with the /grid1/ group. Specify the group
name as the second input to the ncreadatt function.

g = ncreadatt('example.nc','/grid1/','description')

 Import NetCDF Files and OPeNDAP Data

6-17

g =

This is a group attribute.

Read the global attribute, creation_date. For global attributes, specify the second
input argument to ncreadatt as '/'.

creation_date = ncreadatt('example.nc','/','creation_date')

creation_date =

29-Mar-2010

Find All Unlimited Dimensions in NetCDF File

This example shows how to find all unlimited dimensions in a group in a NetCDF file,
using high-level functions.

Get information about the /grid2/ group in the sample file, example.nc, using the
ncinfo function.

ginfo = ncinfo('example.nc','/grid2/')

ginfo =

 Filename: '\\matlabroot\toolbox\matlab\demos\example.nc'
 Name: 'grid2'
 Dimensions: [1x3 struct]
 Variables: [1x1 struct]
 Attributes: [1x1 struct]
 Groups: []
 Format: 'netcdf4'

ncinfo returns a structure array containing information about the group.

Get a vector of the Boolean values that indicate the unlimited dimensions for this group.

unlimDims = [ginfo.Dimensions.Unlimited]

unlimDims =

 0 0 1

Use the unlimDims vector to display the unlimited dimension.

6 Scientific Data

6-18

disp(ginfo.Dimensions(unlimDims))

 Name: 'time'
 Length: 0
 Unlimited: 1

Read from NetCDF File Using Low-Level Functions

This example shows how to get information about the dimensions, variables, and
attributes in a NetCDF file using MATLAB low-level functions in the netcdf package.
To use these functions effectively, you should be familiar with the NetCDF C Interface.

Open NetCDF File

Open the sample NetCDF file, example.nc, using the netcdf.open function, with
read-only access.

ncid = netcdf.open('example.nc','NC_NOWRITE')

ncid = 65536

netcdf.open returns a file identifier.

Get Information About NetCDF File

Get information about the contents of the file using the netcdf.inq function. This
function corresponds to the nc_inq function in the NetCDF library C API.

[ndims,nvars,natts,unlimdimID] = netcdf.inq(ncid)

ndims = 3

nvars = 3

natts = 1

unlimdimID = -1

netcdf.inq returns the number of dimensions, variables, and global attributes in the
file, and returns the identifier of the unlimited dimension in the file. An unlimited
dimension can grow.

Get the name of the global attribute in the file using the netcdf.inqAttName function.
This function corresponds to the nc_inq_attname function in the NetCDF library C

 Import NetCDF Files and OPeNDAP Data

6-19

API. To get the name of an attribute, you must specify the ID of the variable the
attribute is associated with and the attribute number. To access a global attribute, which
is not associated with a particular variable, use the constant 'NC_GLOBAL' as the
variable ID.

global_att_name = netcdf.inqAttName(ncid,...
 netcdf.getConstant('NC_GLOBAL'),0)

global_att_name =
'creation_date'

Get information about the data type and length of the attribute using the
netcdf.inqAtt function. This function corresponds to the nc_inq_att function in the
NetCDF library C API. Again, specify the variable ID using
netcdf.getConstant('NC_GLOBAL').

[xtype,attlen] = netcdf.inqAtt(ncid,...
 netcdf.getConstant('NC_GLOBAL'),global_att_name)

xtype = 2

attlen = 11

Get the value of the attribute, using the netcdf.getAtt function.

global_att_value = netcdf.getAtt(ncid,...
 netcdf.getConstant('NC_GLOBAL'),global_att_name)

global_att_value =
'29-Mar-2010'

Get information about the first dimension in the file, using the netcdf.inqDim function.
This function corresponds to the nc_inq_dim function in the NetCDF library C API. The
second input to netcdf.inqDim is the dimension ID, which is a zero-based index that
identifies the dimension. The first dimension has the index value 0.

[dimname,dimlen] = netcdf.inqDim(ncid,0)

dimname =
'x'

dimlen = 50

netcdf.inqDim returns the name and length of the dimension.

6 Scientific Data

6-20

Get information about the first variable in the file using the netcdf.inqVar function.
This function corresponds to the nc_inq_var function in the NetCDF library C API. The
second input to netcdf.inqVar is the variable ID, which is a zero-based index that
identifies the variable. The first variable has the index value 0.

[varname,vartype,dimids,natts] = netcdf.inqVar(ncid,0)

varname =
'avagadros_number'

vartype = 6

dimids =

 []

natts = 1

netcdf.inqVar returns the name, data type, dimension ID, and the number of
attributes associated with the variable. The data type information returned in vartype
is the numeric value of the NetCDF data type constants, such as, NC_INT and NC_BYTE.
See the NetCDF documentation for information about these constants.

Read Data from NetCDF File

Read the data associated with the variable, avagadros_number, in the example file,
using the netcdf.getVar function. The second input to netcdf.getVar is the variable
ID, which is a zero-based index that identifies the variable. The avagadros_number
variable has the index value 0.

A_number = netcdf.getVar(ncid,0)

A_number = 6.0221e+23

View the data type of A_number.

whos A_number

 Name Size Bytes Class Attributes

 A_number 1x1 8 double

 Import NetCDF Files and OPeNDAP Data

6-21

The functions in the netcdf package automatically choose the MATLAB class that best
matches the NetCDF data type, but you can also specify the class of the return data by
using an optional argument to netcdf.getVar.

Read the data associated with avagadros_number and return the data as class single.

A_number = netcdf.getVar(ncid,0,'single');
whos A_number

 Name Size Bytes Class Attributes

 A_number 1x1 4 single

Close NetCDF File

Close the NetCDF file, example.nc.

netcdf.close(ncid)

See Also
ncdisp | ncinfo | ncread | ncreadatt | netcdf

More About
• “Map NetCDF API Syntax to MATLAB Syntax” on page 6-13

External Websites
• NetCDF C Interface

6 Scientific Data

6-22

http://www.unidata.ucar.edu/software/netcdf/

Resolve Errors Reading OPeNDAP Data
If you have trouble reading OPeNDAP data, consider the following:

• OPeNDAP data is being pulled over the network from a server on the Internet.
Pulling large data could be slow. Speed and reliability depends on their network
connection

• OPeNDAP capability does not support proxy servers or any authentication
• Failure to open an OPeNDAP link could have multiple causes:

• Invalid URL
• Local machine firewall/network firewall does not allow any external connections.
• Local machine firewall/network firewall does not allow external connections on the

OPeNDAP protocol.
• Remote server is down.
• Remote server will not serve the amount of data being requested. In this case, you

can read data in subsets or chunks.
• Remote server is incorrectly configured.

 Resolve Errors Reading OPeNDAP Data

6-23

Export to NetCDF Files

In this section...
“MATLAB NetCDF Capabilities” on page 6-24
“Create New NetCDF File From Existing File or Template” on page 6-24
“Merge Two NetCDF Files” on page 6-26
“Write Data to NetCDF File Using Low-Level Functions” on page 6-28

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. NetCDF is used by a wide range of engineering and scientific
fields that want a standard way to store data so that it can be shared.

MATLAB high-level functions make it easy to export data to a netCDF file. MATLAB
low-level functions provide access to the routines in the NetCDF C library. To use the
low-level functions effectively, you should be familiar with the NetCDF C Interface. The
NetCDF documentation is available at the Unidata website.

Note For information about exporting to Common Data Format (CDF) files, which have a
separate and incompatible format, see “Export to CDF Files” on page 6-10.

Create New NetCDF File From Existing File or Template

This example shows how to create a new NetCDF file that contains the variable,
dimension, and group definitions of an existing file, but uses a different format.

Create a file containing one variable, using the nccreate function.

nccreate('myfile.nc','myvar')

Write data to the file.

A = 99;
ncwrite('myfile.nc','myvar',A)

6 Scientific Data

6-24

http://www.unidata.ucar.edu/software/netcdf/

Read the variable, dimension, and group definitions from the file using ncinfo. This
information defines the file's schema.

S = ncinfo('myfile.nc');

Get the format of the file.

file_fmt = S.Format

file_fmt =
'netcdf4_classic'

Change the value of the Format field in the structure, S, to another supported NetCDF
format.

S.Format = 'netcdf4';

Create a new version of the file that uses the new format, using the ncwriteschema
function. A schema defines the structure of the file but does not contain any of the data
that was in the original file.

ncwriteschema('newfile.nc',S)
S = ncinfo('newfile.nc');

Note: When you convert a file's format using ncwriteschema, you might get a warning
message if the original file format includes fields that are not supported by the new
format. For example, the netcdf4 format supports fill values but the NetCDF classic
format does not. In these cases, ncwriteschema still creates the file, but omits the field
that is undefined in the new format.

View the format of the new file.

new_fmt = S.Format

new_fmt =
'netcdf4'

The new file, newfile.nc, contains the variable and dimension definitions of
myfile.nc, but does not contain the data.

Write data to the new file.

ncwrite('newfile.nc','myvar',A)

 Export to NetCDF Files

6-25

Merge Two NetCDF Files

This example shows how to merge two NetCDF files using high-level functions. The
combined file contains the variable and dimension definitions of the files that are
combined, but does not contain the data in these original files.

Create a NetCDF file named ex1.nc and define a variable named myvar. Then, write
data to the variable and display the file contents.

nccreate('ex1.nc','myvar');
ncwrite('ex1.nc','myvar',55)
ncdisp('ex1.nc')

Source:
 pwd\ex1.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double

Create a second file and define a variable named myvar2. Then, write data to the
variable and display the file contents.

nccreate('ex2.nc','myvar2');
ncwrite('ex2.nc','myvar2',99)
ncdisp('ex2.nc')

Source:
 pwd\ex2.nc
Format:
 netcdf4_classic
Variables:
 myvar2
 Size: 1x1
 Dimensions:
 Datatype: double

Get the schema of each of the files, using the ncinfo function.

info1 = ncinfo('ex1.nc')

6 Scientific Data

6-26

info1 =

 Filename: 'pwd\ex1.nc'
 Name: '/'
 Dimensions: []
 Variables: [1x1 struct]
 Attributes: []
 Groups: []
 Format: 'netcdf4_classic'

info2 = ncinfo('ex2.nc')

info2 =

 Filename: 'pwd\ex2.nc'
 Name: '/'
 Dimensions: []
 Variables: [1x1 struct]
 Attributes: []
 Groups: []
 Format: 'netcdf4_classic'

Create a new NetCDF file that uses the schema of the first example file, using the
ncwriteschema function. Then, display the file contents.

ncwriteschema('combined.nc',info1)
ncdisp('combined.nc')

Source:
 pwd\combined.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36

Add the schema from ex2.nc to combined.nc, using ncwriteschema.

ncwriteschema('combined.nc',info2)

View the contents of the combined file.

 Export to NetCDF Files

6-27

ncdisp('combined.nc')

Source:
 pwd\combined.nc
Format:
 netcdf4_classic
Variables:
 myvar
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36
 myvar2
 Size: 1x1
 Dimensions:
 Datatype: double
 Attributes:
 _FillValue = 9.969209968386869e+36

The file contains the myvar variable defined in the first example file and the myvar2
variable defined in the second file.

Write Data to NetCDF File Using Low-Level Functions
This example shows how to use low-level functions to write data to a NetCDF file. The
MATLAB® low-level functions provide access to the routines in the NetCDF C library.
MATLAB groups the functions into a package, called netcdf. To call one of the functions
in the package, you must prefix the function name with the package name.

To use the MATLAB NetCDF functions effectively, you should be familiar with the
information about the NetCDF C Interface.

To run this example, you must have write permission in your current folder.

Create a 1-by-50 variable of numeric values named my_data in the MATLAB workspace.
The vector is of class double.

my_data = linspace(0,49,50);

Create a NetCDF file named my_file.nc, using the netcdf.create function. The
NOCLOBBER parameter is a NetCDF file access constant that indicates that you do not
want to overwrite an existing file with the same name.

6 Scientific Data

6-28

ncid = netcdf.create('my_file.nc','NOCLOBBER');

netcdf.create returns a file identifier, ncid. When you create a NetCDF file, the file
opens in define mode. You must be in define mode to define dimensions and variables.

Define a dimension in the file, using the netcdf.defDim function. This function
corresponds to the nc_def_dim function in the NetCDF library C API. You must define
dimensions in the file before you can define variables and write data to the file. In this
case, define a dimension named my_dim with length 50.

dimid = netcdf.defDim(ncid,'my_dim',50)

dimid = 0

netcdf.defDim returns a dimension identifier that corresponds to the new dimension.
Identifiers are zero-based indexes.

Define a variable named my_var on the dimension, using the netcdf.defVar function.
This function corresponds to the nc_def_var function in the NetCDF library C API.
Specify the NetCDF data type of the variable, in this case, NC_BYTE.

varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid)

varid = 0

netcdf.defVar returns a variable identifier that corresponds to my_var.

Take the NetCDF file out of define mode. To write data to a file, you must be in data
mode.

netcdf.endDef(ncid)

Write the data from the MATLAB workspace into the variable in the NetCDF file, using
the netcdf.putVar function. The data in the workspace is of class double but the
variable in the NetCDF file is of type NC_BYTE. The MATLAB NetCDF functions
automatically do the conversion.

netcdf.putVar(ncid,varid,my_data)

Close the file, using the netcdf.close function.

netcdf.close(ncid)

 Export to NetCDF Files

6-29

Verify that the data was written to the file by opening the file and reading the data from
the variable into a new variable in the MATLAB workspace.

ncid2 = netcdf.open('my_file.nc','NC_NOWRITE');
x = netcdf.getVar(ncid2,0);

View the data type of x.

whos x

 Name Size Bytes Class Attributes

 x 50x1 50 int8

MATLAB stores data in column-major order while the NetCDF C API uses row-major
order. x represents the data stored in the NetCDF file and is therefore 50-by-1 even
though the original vector in the MATLAB workspace, my_data, is 1-by-50. Because you
stored the data in the NetCDF file as NC_BYTE, MATLAB reads the data from the
variable into the workspace as class int8.

Close the file.

netcdf.close(ncid2)

See Also
netcdf

More About
• “Map NetCDF API Syntax to MATLAB Syntax” on page 6-13

External Websites
• NetCDF C Interface

6 Scientific Data

6-30

http://www.unidata.ucar.edu/software/netcdf/

Importing Flexible Image Transport System (FITS) Files
The FITS file format is the standard data format used in astronomy, endorsed by both
NASA and the International Astronomical Union (IAU). For more information about the
FITS standard, go to the FITS Web site, http://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of
multidimensional arrays (1-D spectra, 2-D images, or 3-D data cubes) and two-
dimensional tables containing rows and columns of data. A data file in FITS format can
contain multiple components, each marked by an ASCII text header followed by binary
data. The first component in a FITS file is known as the primary, which can be followed
by any number of other components, called extensions, in FITS terminology. For a
complete list of extensions, see fitsread.

To get information about the contents of a Flexible Image Transport System (FITS) file,
use the fitsinfo function. The fitsinfo function returns a structure containing the
information about the file and detailed information about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport System
(FITS) file, use the fitsread function. Using this function, you can import the primary
data in the file or you can import the data in any of the extensions in the file, such as the
Image extension, as shown in this example.

1 Determine which extensions the FITS file contains, using the fitsinfo function.
info = fitsinfo('tst0012.fits')

info =

 Filename: 'matlabroot\tst0012.fits'
 FileModDate: '12-Mar-2001 19:37:46'
 FileSize: 109440
 Contents: {'Primary' 'Binary Table' 'Unknown' 'Image' 'ASCII Table'}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Unknown: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including the
Binary Table, ASCII Table, and Image extensions.

2 Read data from the file.

To read the Primary data in the file, specify the filename as the only argument:

 Importing Flexible Image Transport System (FITS) Files

6-31

http://fits.gsfc.nasa.gov/

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the extension
as an optional parameter. This example reads the Binary Table extension from the
FITS file:

bindata = fitsread('tst0012.fits','binarytable');

6 Scientific Data

6-32

Importing HDF5 Files

In this section...
“Overview” on page 6-33
“Using the High-Level HDF5 Functions to Import Data” on page 6-33
“Using the Low-Level HDF5 Functions to Import Data” on page 6-40

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National Center for
Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and
scientific fields that want a standard way to store data so that it can be shared. For more
information about the HDF5 file format, read the HDF5 documentation available at the
HDF Web site (http://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:

• High-level functions that make it easy to import data, when working with numeric
datasets

• Low-level functions that enable more complete control over the importing process, by
providing access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a separate,
incompatible format, see “Import HDF4 Files Programatically” on page 6-54.

Using the High-Level HDF5 Functions to Import Data

MATLAB includes several functions that you can use to examine the contents of an
HDF5 file and import data from the file into the MATLAB workspace.

Note You can only use the high-level functions to read numeric datasets or attributes. To
read non-numeric datasets or attributes, you must use the low-level interface on page 6-
40.

 Importing HDF5 Files

6-33

http://www.hdfgroup.org

• h5disp — View the contents of an HDF5 file
• h5info — Create a structure that contains all the metadata defining an HDF5 file
• h5read — Read data from a variable in an HDF5 file
• h5readatt — Read data from an attribute associated with a variable in an HDF5 file

or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which include
examples. The following sections illustrate some common usage scenarios.

Determining the Contents of an HDF5 File

HDF5 files can contain data and metadata, called attributes. HDF5 files organize the
data and metadata in a hierarchical structure similar to the hierarchical structure of a
UNIX file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group can contain
other groups, data sets, attributes, links, and data types. A data set is a collection of
data, such as a multidimensional numeric array or string. An attribute is any data that
is associated with another entity, such as a data set. A link is similar to a UNIX file
system symbolic link. Links are a way to reference objects without having to make a copy
of the object.

Data types are a description of the data in the data set or attribute. Data types tell how
to interpret the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.

h5disp('example.h5')

HDF5 example.h5
Group '/'
 Attributes:
 'attr1': 97 98 99 100 101 102 103 104 105 0
 'attr2': 2x2 H5T_INTEGER
 Group '/g1'
 Group '/g1/g1.1'
 Dataset 'dset1.1.1'
 Size: 10x10
 MaxSize: 10x10
 Datatype: H5T_STD_I32BE (int32)
 ChunkSize: []
 Filters: none

6 Scientific Data

6-34

 Attributes:
 'attr1': 49 115 116 32 97 116 116 114 105 ...
 'attr2': 50 110 100 32 97 116 116 114 105 ...
 Dataset 'dset1.1.2'
 Size: 20
 MaxSize: 20
 Datatype: H5T_STD_I32BE (int32)
 ChunkSize: []
 Filters: none
 Group '/g1/g1.2'
 Group '/g1/g1.2/g1.2.1'
 Link 'slink'
 Type: soft link
 Group '/g2'
 Dataset 'dset2.1'
 Size: 10
 MaxSize: 10
 Datatype: H5T_IEEE_F32BE (single)
 ChunkSize: []
 Filters: none
 Dataset 'dset2.2'
 Size: 5x3
 MaxSize: 5x3
 Datatype: H5T_IEEE_F32BE (single)
 ChunkSize: []
 Filters: none
 .
 .
 .

To explore the hierarchical organization of an HDF5 file, use the h5info function.
h5info returns a structure that contains various information about the HDF5 file,
including the name of the file.

info = h5info('example.h5')
info =

 Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [4x1 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [2x1 struct]

 Importing HDF5 Files

6-35

By looking at the Groups and Attributes fields, you can see that the file contains four
groups and two attributes. The Datasets, Datatypes, and Links fields are all empty,
indicating that the root group does not contain any data sets, data types, or links. To
explore the contents of the sample HDF5 file further, examine one of the structures in
Groups. The following example shows the contents of the second structure in this field.

level2 = info.Groups(2)

level2 =

 Name: '/g2'
 Groups: []
 Datasets: [2x1 struct]
 Datatypes: []
 Links: []
 Attributes: []

In the sample file, the group named /g2 contains two data sets. The following figure
illustrates this part of the sample HDF5 file organization.

/

attr1 attr2 /g2 /g3 /g4/g1

dset2.1 dset2.2

To get information about a data set, such as its name, dimensions, and data type, look at
either of the structures returned in the Datasets field.

dataset1 = level2.Datasets(1)

dataset1 =
 Filename: 'matlabroot\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]

6 Scientific Data

6-36

 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

Importing Data from an HDF5 File

To read data or metadata from an HDF5 file, use the h5read function. As arguments,
specify the name of the HDF5 file and the name of the data set. (To read the value of an
attribute, you must use h5readatt.)

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5 sample file
example.h5.

data = h5read('example.h5','/g2/dset2.1')

data =

 1.0000
 1.1000
 1.2000
 1.3000
 1.4000
 1.5000
 1.6000
 1.7000
 1.8000
 1.9000

Mapping HDF5 Datatypes to MATLAB Datatypes

When the h5read function reads data from an HDF5 file into the MATLAB workspace, it
maps HDF5 data types toMATLAB data types, as shown in the table below.
HDF5 Data Type h5read Returns
Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they

occupy 64 bits or fewer

 Importing HDF5 Files

6-37

HDF5 Data Type h5read Returns
Integer types, signed and
unsigned

Equivalent MATLAB integer types, signed and
unsigned

Opaque Array of uint8 values
Reference Returns the actual data pointed to by the reference,

not the value of the reference.
Strings, fixed-length and
variable length

Cell array of character vectors

Enums Cell array of character vectors, where each enumerated
value is replaced by the corresponding member name

Compound 1-by-1 struct array; the dimensions of the dataset are
expressed in the fields of the structure.

Arrays Array of values using the same datatype as the HDF5
array. For example, if the array is of signed 32-bit
integers, the MATLAB array will be of type int32.

The example HDF5 file included with MATLAB includes examples of all these datatypes.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g3/string')
HDF5 example.h5
Dataset 'string'
 Size: 2
 MaxSize: 2
 Datatype: H5T_STRING
 String Length: 3
 Padding: H5T_STR_NULLTERM
 Character Set: H5T_CSET_ASCII
 Character Type: H5T_C_S1
 ChunkSize: []
 Filters: none
 FillValue: ''

Now read the data from the file, MATLAB returns it as a cell array of character vectors.
s = h5read('example.h5','/g3/string')

s =

6 Scientific Data

6-38

 'ab '
 'de '

>> whos s
 Name Size Bytes Class Attributes

 s 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The dimensions of the
data set are expressed in the fields of the struct. For example, the data set /g3/
compound2D is a compound datatype.

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'
 Size: 2x3
 MaxSize: 2x3
 Datatype: H5T_COMPOUND
 Member 'a': H5T_STD_I8LE (int8)
 Member 'b': H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: H5T_COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.

data = h5read('example.h5','/g3/compound2D')

data =

 a: [2x3 int8]
 b: [2x3 double]

Read an HDF5 Dataset with Dynamically Loaded Filters

In R2015a and later releases, MATLAB supports reading HDF5 datasets that are
written using a third-party filter. To read the datasets using the dynamically loaded
filter feature, you must:

• Install the HDF5 filter plugin on your system as a shared library or a DLL.
• Set the HDF5_PLUGIN_PATH environment variable to point to the installation.

For more information see, HDF5 Dynamically Loaded Filters.

 Importing HDF5 Files

6-39

https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf

Note Writing HDF5 datasets using dynamically loaded filters is not supported.

Using the Low-Level HDF5 Functions to Import Data

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level
functions that correspond to the functions in the HDF5 library. In this way, you can
access the features of the HDF5 library from MATLAB, such as reading and writing
complex data types and using the HDF5 subsetting capabilities. For more information,
see “Using the MATLAB Low-Level HDF5 Functions to Export Data” on page 6-42.

6 Scientific Data

6-40

Exporting to HDF5 Files

In this section...
“Overview” on page 6-41
“Using the MATLAB High-Level HDF5 Functions to Export Data” on page 6-41
“Using the MATLAB Low-Level HDF5 Functions to Export Data” on page 6-42

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National Center for
Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and
scientific fields that want a standard way to store data so that it can be shared. For more
information about the HDF5 file format, read the HDF5 documentation available at the
HDF Web site (http://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

• High-level functions that simplify the process of exporting data, when working with
numeric datasets

• Low-level functions that provide a MATLAB interface to routines in the HDF5 C
library

Note For information about exporting to HDF4 files, which have a separate and
incompatible format, see “Export to HDF4 Files” on page 6-81.

Using the MATLAB High-Level HDF5 Functions to Export Data

The easiest way to write data or metadata from the MATLAB workspace to an HDF5 file
is to use these MATLAB high-level functions.

Note You can use the high-level functions only with numeric data. To write nonnumeric
data, you must use the low-level interface on page 6-42.

 Exporting to HDF5 Files

6-41

http://www.hdfgroup.org

• h5create — Create an HDF5 dataset
• h5write — Write data to an HDF5 dataset
• h5writeatt — Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which include
examples. The following sections illustrate some common usage scenarios.

Writing a Numeric Array to an HDF5 Dataset

This example creates an array and then writes the array to an HDF5 file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5 array of
uint8 values.
testdata = uint8(magic(5))

2 Create the HDF5 file and the dataset, using h5create.
h5create('my_example_file.h5', '/dataset1', size(testdata))

3 Write the data to the HDF5 file.
h5write('my_example_file.h5', '/dataset1', testdata)

Using the MATLAB Low-Level HDF5 Functions to Export Data

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level
functions that correspond to the functions in the HDF5 library. In this way, you can
access the features of the HDF5 library from MATLAB, such as reading and writing
complex data types and using the HDF5 subsetting capabilities.

The HDF5 library organizes the library functions into collections, called interfaces. For
example, all the routines related to working with files, such as opening and closing, are
in the H5F interface, where F stands for file. MATLAB organizes the low-level HDF5
functions into classes that correspond to each HDF5 interface. For example, the
MATLAB functions that correspond to the HDF5 file interface (H5F) are in the @H5F
class folder.

The following sections provide more detail about how to use the MATLAB HDF5 low-
level functions.

• “Map HDF5 Function Syntax to MATLAB Function Syntax” on page 6-43
• “Map Between HDF5 Data Types and MATLAB Data Types” on page 6-45

6 Scientific Data

6-42

• “Report Data Set Dimensions” on page 6-46
• “Write Data to HDF5 Data Set Using MATLAB Low-Level Functions” on page 6-46
• “Write a Large Data Set” on page 6-49
• “Preserve Correct Layout of Your Data” on page 6-49

Note This section does not describe all features of the HDF5 library or explain basic
HDF5 programming concepts. To use the MATLAB HDF5 low-level functions effectively,
refer to the official HDF5 documentation available at http://www.hdfgroup.org.

Map HDF5 Function Syntax to MATLAB Function Syntax

In most cases, the syntax of the MATLAB low-level HDF5 functions matches the syntax
of the corresponding HDF5 library functions. For example, the following is the function
signature of the H5Fopen function in the HDF5 library. In the HDF5 function
signatures, hid_t and herr_t are HDF5 types that return numeric values that
represent object identifiers or error status values.
hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB class. The
following shows the signature of the corresponding MATLAB function. First note that,
because it's a method of a class, you must use the dot notation to call the MATLAB
function: H5F.open. This MATLAB function accepts the same three arguments as the
HDF5 function: a character vector containing the name, an HDF5-defined constant for
the flags argument, and an HDF5 property list ID. You use property lists to specify
characteristics of many different HDF5 objects. In this case, it's a file access property list.
Refer to the HDF5 documentation to see which constants can be used with a particular
function and note that, in MATLAB, constants are passed as character vectors.
file_id = H5F.open(name, flags, plist_id)

There are, however, some functions where the MATLAB function signature is different
than the corresponding HDF5 library function. The following describes some general
differences that you should keep in mind when using the MATLAB low-level HDF5
functions.

• HDF5 output parameters become MATLAB return values — Some HDF5
library functions use function parameters to return data. Because MATLAB functions
can return multiple values, these output parameters become return values. To
illustrate, the HDF5 H5Dread function returns data in the buf parameter.

 Exporting to HDF5 Files

6-43

http://www.hdfgroup.org

herr_t H5Dread(hid_t dataset_id,
 hid_t mem_type_id,
 hid_t mem_space_id,
 hid_t file_space_id,
 hid_t xfer_plist_id,
 void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a
return value. Also, in the MATLAB function, the nonzero or negative value herr_t
return values become MATLAB errors. Use MATLAB try-catch statements to
handle errors.
buf = H5D.read(dataset_id,
 mem_type_id,
 mem_space_id,
 file_space_id,
 plist_id)

• String length parameters are unnecessary — The length parameter, used by
some HDF5 library functions to specify the length of a string parameter, is not
necessary in the corresponding MATLAB function. For example, the H5Aget_name
function in the HDF5 library includes a buffer as an output parameter and the size of
the buffer as an input parameter.
ssize_t H5Aget_name(hid_t attr_id,
 size_t buf_size,
 char *buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a
return value and drops the buf_size parameter.

buf = H5A.get_name(attr_id)
• Use an empty array to specify NULL — Wherever HDF5 library functions accept

the value NULL, the corresponding MATLAB function uses empty arrays ([]). For
example, the H5Dfill function in the HDF5 library accepts the value NULL in place
of a specified fill value.
herr_t H5Dfill(const void *fill,
 hid_t fill_type_id, void *buf,
 hid_t buf_type_id,
 hid_t space_id) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty array
([]) instead of NULL.

• Use cell arrays to specify multiple constants — Some functions in the HDF5
library require you to specify an array of constants. For example, in the
H5Screate_simple function, to specify that a dimension in the data space can be

6 Scientific Data

6-44

unlimited, you use the constant H5S_UNLIMITED for the dimension in maxdims. In
MATLAB, because you pass constants as character vectors, you must use a cell array
of character vectors to achieve the same result. The following code fragment provides
an example of using a cell array of character vectors to specify this constant for each
dimension of this data space.
ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

Map Between HDF5 Data Types and MATLAB Data Types

When the HDF5 low-level functions read data from an HDF5 file or write data to an
HDF5 file, the functions map HDF5 data types to MATLAB data types automatically.

For atomic data types, such as commonly used binary formats for numbers (integers and
floating point) and characters (ASCII), the mapping is typically straightforward because
MATLAB supports similar types. See the table Mapping Between HDF5 Atomic Data
Types and MATLAB Data Types for a list of these mappings.
Mapping Between HDF5 Atomic Data Types and MATLAB Data Types

HDF5 Atomic Data Type MATLAB Data Type
Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they occupy

64 bits or fewer
Integer types, signed
and unsigned

Equivalent MATLAB integer types, signed and unsigned

Opaque Array of uint8 values
Reference Array of uint8 values
String MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data types into
structures, multidimensional arrays, and variable-length data types (one-dimensional
arrays), the mapping is sometimes ambiguous with reference to the HDF5 data type. In
HDF5, a 5-by-5 data set containing a single uint8 value in each element is distinct from
a 1-by-1 data set containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value. In the second case, the data set contains a
single observation with 25 values. In MATLAB both of these data sets are represented by
a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data types directly to
make sure that you have the mapping you intend. See the table Mapping Between HDF5

 Exporting to HDF5 Files

6-45

Composite Data Types and MATLAB Data Types for a list of the default mappings. You
can specify the data type when you write data to the file using the H5Dwrite function.
See the HDF5 data type interface documentation for more information.
Mapping Between HDF5 Composite Data Types and MATLAB Data Types

HDF5 Composite Data
Type

MATLAB Data Type

Array Extends the dimensionality of the data type which it contains.
For example, an array of an array of integers in HDF5 would
map onto a two dimensional array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing HDF5
data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name
Variable Length MATLAB 1-D cell arrays

Report Data Set Dimensions

The MATLAB low-level HDF5 functions report data set dimensions and the shape of
data sets differently than the MATLAB high-level functions. For ease of use, the
MATLAB high-level functions report data set dimensions consistent with MATLAB
column-major indexing. To be consistent with the HDF5 library, and to support the
possibility of nested data sets and complicated data types, the MATLAB low-level
functions report array dimensions using the C row-major orientation.

Write Data to HDF5 Data Set Using MATLAB Low-Level Functions

This example shows how to use the MATLAB® HDF5 low-level functions to write a data
set to an HDF5 file and then read the data set from the file.

Create a 2-by-3 array of data to write to an HDF5 file.

testdata = [1 3 5; 2 4 6];

Create a new HDF5 file named my_file.h5 in the system temp folder. Use the
MATLAB H5F.create function to create a file. This MATLAB function corresponds to
the HDF5 function, H5Fcreate. As arguments, specify the name you want to assign to
the file, the type of access you want to the file ('H5F_ACC_TRUNC' in this case), and
optional additional characteristics specified by a file creation property list and a file
access property list. In this case, use default values for these property lists
('H5P_DEFAULT'). Pass C constants to the MATLAB function as character vectors.

6 Scientific Data

6-46

filename = fullfile(tempdir,'my_file.h5');
fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

H5F.create returns a file identifier corresponding to the HDF5 file.

Create the data set in the file to hold the MATLAB variable. In the HDF5 programming
model, you must define the data type and dimensionality (data space) of the data set as
separate entities. First, use the H5T.copy function to specify the data type used by the
data set, in this case, double. This MATLAB function corresponds to the HDF5 function,
H5Tcopy.

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

H5T.copy returns a data type identifier.

Create a data space using H5S.create_simple, which corresponds to the HDF5
function, H5Screate_simple. The first input, 2, is the rank of the data space. The
second input is an array specifying the size of each dimension of the dataset. Because
HDF5 stores data in row-major order and the MATLAB array is organized in column-
major order, you should reverse the ordering of the dimension extents before using
H5Screate_simple to preserve the layout of the data. You can use fliplr for this
purpose.

dims = size(testdata);
dataspaceID = H5S.create_simple(2, fliplr(dims), []);

H5S.create_simple returns a data space identifier, dataspaceID. Note that other
software programs that use row-major ordering (such as H5DUMP from the HDF Group)
might report the size of the dataset to be 3-by-2 instead of 2-by-3.

Create the data set using H5D.create, which corresponds to the HDF5 function,
H5Dcreate. Specify the file identifier, the name you want to assign to the data set, the
data type identifier, the data space identifier, and a data set creation property list
identifer as arguments. 'H5P_DEFAULT' specifies the default property list settings.

dsetname = 'my_dataset';
datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

H5D.create returns a data set identifier, datasetID.

Write the data to the data set using H5D.write, which corresponds to the HDF5
function, H5Dwrite. The input arguments are the data set identifier, the memory data

 Exporting to HDF5 Files

6-47

type identifier, the memory space identifier, the data space identifier, the transfer
property list identifier and the name of the MATLAB variable to write to the data set.
The constant, 'H5ML_DEFAULT', specifies automatic mapping to HDF5 data types. The
constant, 'H5S_ALL', tells H5D.write to write all the data to the file.

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',...
 'H5P_DEFAULT',testdata);

Close the data set, data space, data type, and file objects. If used inside a MATLAB
function, these identifiers are closed automatically when they go out of scope.

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

Open the HDF5 file in order to read the data set you wrote. Use H5F.open to open the
file for read-only access. This MATLAB function corresponds to the HDF5 function,
H5Fopen.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

Open the data set to read using H5D.open, which corresponds to the HDF5 function,
H5Dopen. Specify as arguments the file identifier and the name of the data set, defined
earlier in the example.

datasetID = H5D.open(fileID,dsetname);

Read the data into the MATLAB workspace using H5D.read, which corresponds to the
HDF5 function, H5Dread. The input arguments are the data set identifier, the memory
data type identifier, the memory space identifier, the data space identifier, and the
transfer property list identifier.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
 'H5S_ALL','H5S_ALL','H5P_DEFAULT');

Compare the original MATLAB variable, testdata, with the variable just created,
returned_data.

isequal(testdata,returned_data)

ans = logical
 1

6 Scientific Data

6-48

The two variables are the same.

Write a Large Data Set

To write a large data set, you must use the chunking capability of the HDF5 library. To
do this, create a property list and use the H5P.set_chunk function to set the chunk size
in the property list. Suppose the dimensions of your data set are [2^16 2^16] and the
chunk size is 1024-by-1024. You then pass the property list as the last argument to the
data set creation function, H5D.create, instead of using the H5P_DEFAULT value.
dims = [2^16 2^16];
plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size
H5P.set_chunk(plistID, fliplr(chunk_size)); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

Preserve Correct Layout of Your Data

When you use any of the following functions that deal with dataspaces, you should flip
dimension extents to preserve the correct layout of the data.

• H5D.set_extent
• H5P.get_chunk
• H5P.set_chunk
• H5S.create_simple
• H5S.get_simple_extent_dims
• H5S.select_hyperslab
• H5T.array_create
• H5T.get_array_dims

 Exporting to HDF5 Files

6-49

Working with Non-ASCII Characters in HDF5 Files
To enable sharing of HDF5 files across multiple locales, MATLAB supports the use of
non-ASCII characters in HDF5 files. This example shows you how to:

• Create HDF5 files containing dataset and attribute names that have non-ASCII
characters using the high-level functions.

• Create variable-length string datasets containing non-ASCII characters using the
low-level functions.

Create Dataset and Attribute Names Containing Non-ASCII Characters

Create an HDF5 file containing a dataset name and an attribute name that contains non-
ASCII characters. To check if the dataset and attribute names appear as expected, write
data to the dataset, and display the file information.

Create a dataset with a name (/数据集) that includes non-ASCII characters.

dsetName = ['/' char([25968 25454 38598])];
dsetDims = [5 2];
h5create('outfile.h5',['/grp1' dsetName],dsetDims,...
 'TextEncoding','UTF-8');

Write data to the file.

dataToWrite = rand(dsetDims);
h5write('outfile.h5',['/grp1' dsetName],dataToWrite);

Create an attribute name (敯捭雅) that includes non-ASCII characters and assign a value
to the attribute.

attrName = char([25967 25453 38597]);
h5writeatt('outfile.h5','/',attrName,'I am an attribute',...
 'TextEncoding','UTF-8');

Display information about the file and check if the attribute name and datastet name
appear correctly.

h5disp('outfile.h5')

HDF5 outfile.h5
Group '/'

6 Scientific Data

6-50

 Attributes:
 '/敯捭雅': 'I am an attribute'
 Group '/grp1'
 Dataset '数据集'
 Size: 5x2
 MaxSize: 5x2
 Datatype: H5T_IEEE_F64LE (double)
 ChunkSize: []
 Filters: none
 FillValue: 0.000000

Create Variable-Length String Data Containing Non-ASCII Characters

Create a variable-length string dataset to store data containing non-ASCII characters
using the low-level functions. Write the data to the dataset. Check if the data is written
correctly.

Create data containing non-ASCII characters.

dataToWrite = {char([12487 12540 12479]) 'hello' ...
 char([1605 1585 1581 1576 1575]); ...
 'world' char([1052 1080 1088]) ...
 char([954 972 963 956 959 962])};
disp(dataToWrite)

 'データ' 'hello' 'مرحبا'
 'world' 'Мир' 'κόσμος'

To write this data into a file, create an HDF5 file, define a group name, and a dataset
name within the group.

Create the HDF5 file.

fileName = 'outfile.h5';
fileID = H5F.create(fileName,'H5F_ACC_TRUNC',...
 'H5P_DEFAULT', 'H5P_DEFAULT');

To create the group containing non-ASCII characters in its name, first, configure the link
creation property.

lcplID = H5P.create('H5P_LINK_CREATE');
H5P.set_char_encoding(lcplID,H5ML.get_constant_value('H5T_CSET_UTF8'));
plist = 'H5P_DEFAULT';

 Working with Non-ASCII Characters in HDF5 Files

6-51

Then, create the group (グループ).

grpName = char([12464 12523 12540 12503]);
grpID = H5G.create(fileID,grpName,lcplID,plist,plist);

Create a dataset that contains variable-length string data with non-ASCII characters.
First, configure its data type.

typeID = H5T.copy('H5T_C_S1');
H5T.set_size(typeID,'H5T_VARIABLE');
H5T.set_cset(typeID,H5ML.get_constant_value('H5T_CSET_UTF8'));

Now create the dataset by specifying its name, data type, and dimensions.

dsetName = 'datasetUtf8';
dataDims = [2 3];
h5DataDims = fliplr(dataDims);
h5MaxDims = h5DataDims;
spaceID = H5S.create_simple(2,h5DataDims,h5MaxDims);
dsetID = H5D.create(grpID,dsetName,typeID,spaceID,...
 'H5P_DEFAULT','H5P_DEFAULT','H5P_DEFAULT');

Write the data to the dataset.

H5D.write(dsetID,'H5ML_DEFAULT','H5S_ALL',...
 'H5S_ALL','H5P_DEFAULT',dataToWrite);

Read the data back.

dataRead = h5read('outfile.h5',['/' grpName '/' dsetName])

dataRead =

 2×3 cell array

 {'データ'} {'hello'} {'مرحبا' }
 {'world'} {'Мир' } {'κόσμος'}

Check if data in the file matches the written data.

isequal(dataRead,dataToWrite)

ans =

 logical

6 Scientific Data

6-52

 1

Close ids.

H5D.close(dsetID);
H5S.close(spaceID);
H5T.close(typeID);
H5G.close(grpID);
H5P.close(lcplID);
H5F.close(fileID);

See Also
H5A.get_name | H5I.get_name | H5L.get_name_by_idx | H5L.get_val |
H5R.get_name | h5create | h5disp | h5info | h5writeatt

 See Also

6-53

Import HDF4 Files Programatically

In this section...
“Overview” on page 6-54
“Using the MATLAB HDF4 High-Level Functions” on page 6-54

Overview

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard
for storing scientific data in files, developed by the National Center for Supercomputing
Applications (NCSA). For more information about these file formats, read the HDF
documentation at the HDF Web site (www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and
Space Administration (NASA) for storage of data returned from the Earth Observing
System (EOS). For more information about this extension to HDF4, see the HDF-EOS
documentation at the NASA Web site (www.hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in the following
sections.

Note For information about importing HDF5 data, which is a separate, incompatible
format, see “Importing HDF5 Files” on page 6-33.

Using the MATLAB HDF4 High-Level Functions

To import data from an HDF or HDF-EOS file, you can use the MATLAB HDF4 high-
level function hdfread. The hdfread function provides a programmatic way to import
data from an HDF4 or HDF-EOS file that still hides many of the details that you need to
know if you use the low-level HDF functions, described in “Import HDF4 Files Using
Low-Level Functions” on page 6-60.

This section describes these high-level MATLAB HDF functions, including

• “Using hdfinfo to Get Information About an HDF4 File” on page 6-55
• “Using hdfread to Import Data from an HDF4 File” on page 6-55

6 Scientific Data

6-54

http://www.hdfgroup.org
http://www.hdfeos.org

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level functions.

Using hdfinfo to Get Information About an HDF4 File

To get information about the contents of an HDF4 file, use the hdfinfo function. The
hdfinfo function returns a structure that contains information about the file and the
data in the file.

This example returns information about a sample HDF4 file included with MATLAB:

info = hdfinfo('example.hdf')

info =

 Filename: 'matlabroot\example.hdf'
 Attributes: [1x2 struct]
 Vgroup: [1x1 struct]
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File

To use the hdfread function, you must specify the data set that you want to read. You
can specify the filename and the data set name as arguments, or you can specify a
structure returned by the hdfinfo function that contains this information. The following
example shows both methods. For information about how to import a subset of the data
in a data set, see “Reading a Subset of the Data in a Data Set” on page 6-57.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo function.

info = hdfinfo('example.hdf')

info =

 Filename: 'matlabroot\example.hdf'
 Attributes: [1x2 struct]
 Vgroup: [1x1 struct]
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

 Import HDF4 Files Programatically

6-55

To determine the names and other information about the data sets in the file, look at
the contents of the SDS field. The Name field in the SDS structure gives the name of
the data set.

dsets = info.SDS

dsets =

 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify the name
of the data set as a parameter to the function. Note that the data set name is case
sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =

 3 4 5 6 7
 4 5 6 7 8
 5 6 7 8 9
 6 7 8 9 10
 7 8 9 10 11
 8 9 10 11 12
 9 10 11 12 13
 10 11 12 13 14
 11 12 13 14 15
 12 13 14 15 16
 13 14 15 16 17
 14 15 16 17 18
 15 16 17 18 19
 16 17 18 19 20
 17 18 19 20 21
 18 19 20 21 22

6 Scientific Data

6-56

Alternatively, you can specify the specific field in the structure returned by hdfinfo
that contains this information. For example, to read a scientific data set, use the SDS
field.

dset = hdfread(info.SDS);

Reading a Subset of the Data in a Data Set

To read a subset of a data set, you can use the optional 'index' parameter. The value of
the index parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and the amount
of data to read (e.g., the length along each dimension). In HDF4 terminology, these
parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).
• Reads every element in the array ([]).
• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
 'Index',{[3 3],[],[10 2]})

subset =

 7 8
 8 9
 9 10
 10 11
 11 12
 12 13
 13 14
 14 15
 15 16
 16 17

 Import HDF4 Files Programatically

6-57

Map HDF4 to MATLAB Syntax
Each HDF4 API includes many individual routines that you use to read data from files,
write data to files, and perform other related functions. For example, the HDF4 Scientific
Data (SD) API includes separate C routines to open (SDopen), close (SDend), and read
data (SDreaddata). For the SD API and the HDF-EOS GD and SW APIs, MATLAB
provides functions that map to individual C routines in the HDF4 library. These
functions are implemented in the matlab.io.hdf4.sd, matlab.io.hdfeos.gd, and
matlab.io.hdfeos.sw packages. For example, the SD API includes the C routine
SDendaccess to close an HDF4 data set:

status = SDendaccess(sds_id); /* C code */

To call this routine from MATLAB, use the MATLAB function,
matlab.io.hdf4.sd.endAccess. The syntax is similar:

sd.endAccess(sdsID)

For the remaining supported HDF4 APIs, MATLAB provides a single function that
serves as a gateway to all the routines in the particular HDF4 API. For example, the
HDF Annotations (AN) API includes the C routine ANend to terminate access to an AN
interface:
status = ANend(an_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with the AN
API, hdfan. You must specify the name of the routine, minus the API acronym, as the
first argument and pass any other required arguments to the routine in the order they
are expected. For example,
status = hdfan('end',an_id);

Some HDF4 API routines use output arguments to return data. Because MATLAB does
not support output arguments, you must specify these arguments as return values.

For example, the ANget_tagref routine returns the tag and reference number of an
annotation in two output arguments, ann_tag and ann_ref. Here is the C code:

status = ANget_tagref(an_id,index,annot_type,ann_tag,ann_ref);

To call this routine from MATLAB, change the output arguments into return values:
[tag,ref,status] = hdfan('get_tagref',AN_id,index,annot_type);

6 Scientific Data

6-58

Specify the return values in the same order as they appear as output arguments. The
function status return value is always specified as the last return value.

 Map HDF4 to MATLAB Syntax

6-59

Import HDF4 Files Using Low-Level Functions
This example shows how to read data from a Scientific Data Set in an HDF4 file, using
the functions in the matlat.io.hdf4.sd package. In HDF4 terminology, the numeric
arrays stored in HDF4 files are called data sets.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Subsequent calls to functions in the matlat.io.hdf4.sd package need only be prefixed
with sd, rather than the entire package path.

Open HDF4 File

Open the example HDF4 file, sd.hdf, and specify read access, using the
matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine,
SDstart.

sdID = sd.start('sd.hdf','read');

sd.start returns an HDF4 SD file identifier, sdID.

Get Information About HDF4 File

Get the number of data sets and global attributes in the file, using the
matlab.io.hdf4.sd.fileInfo function. This function corresponds to the SD API
routine, SDfileinfo.

[ndatasets,ngatts] = sd.fileInfo(sdID)

ndatasets = 4

ngatts = 1

The file, sd.hdf, contains four data sets and one global attribute,

Get Attributes from HDF4 File

Get the contents of the first global attribute. HDF4 uses zero-based indexing, so an index
value of 0 specifies the first index.

6 Scientific Data

6-60

HDF4 files can optionally include information, called attributes, that describes the data
that the file contains. Attributes associated with an entire HDF4 file are global
attributes. Attributes associated with a data set are local attributes.

attr = sd.readAttr(sdID,0)

attr =
'02-Sep-2010 11:13:16'

Select Data Sets to Import

Determine the index number of the data set named temperature. Then, get the
identifier of that data set.

idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);

sd.select returns an HDF4 SD data set identifier, sdsID.

Get Information About Data Set

Get information about the data set identified by sdsID using the
matlab.io.hdf4.sd.getInfo function. This function corresponds to the SD API
routine, SDgetinfo.

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)

name =
'temperature'

dims =

 20 10

datatype =
'double'

nattrs = 11

sd.getInfo returns information about the name, size, data type, and number of
attributes of the data set.

 Import HDF4 Files Using Low-Level Functions

6-61

Read Entire Data Set

Read the entire contents of the data set specified by the data set identifier, sdsID.

data = sd.readData(sdsID);

Read Portion of Data Set

Read a 2-by-4 portion of the data set, starting from the first column in the second row.
Use the matlab.io.hdf4.sd.readData function, which corresponds to the SD API
routine, SDreaddata. The start input is a vector of index values specifying the location
in the data set where you want to start reading data. The count input is a vector
specifying the number of elements to read along each data set dimension.

start = [0 1];
count = [2 4];
data2 = sd.readData(sdsID,start,count)

data2 =

 21 41 61 81
 22 42 62 82

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This
function corresponds to the SD API routine, SDendaccess. You must close access to all
the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID)

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function
corresponds to the SD API routine, SDend.

sd.close(sdID)

See Also
sd.close | sd.endAccess | sd.fileInfo | sd.getInfo | sd.readData |
sd.start

6 Scientific Data

6-62

More About
• “Map HDF4 to MATLAB Syntax” on page 6-58

 See Also

6-63

Import HDF4 Files Interactively
The HDF Import Tool is a graphical user interface that you can use to navigate through
HDF4 or HDF-EOS files and import data from them. Importing data using the HDF
Import Tool involves these steps:

In this section...
“Step 1: Opening an HDF4 File in the HDF Import Tool” on page 6-64
“Step 2: Selecting a Data Set in an HDF File” on page 6-65
“Step 3: Specifying a Subset of the Data (Optional)” on page 6-66
“Step 4: Importing Data and Metadata” on page 6-67
“Step 5: Closing HDF Files and the HDF Import Tool” on page 6-68
“Using the HDF Import Tool Subsetting Options” on page 6-68

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool

Open an HDF4 or HDF-EOS file in MATLAB using one of the following methods:

• On the Home tab, in the Variable section, click Import Data. If you select an HDF4
or HDF-EOS file, the MATLAB Import Wizard automatically starts the HDF Import
Tool.

• Start the HDF Import Tool by entering the hdftool command at the MATLAB
command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open option on the
HDFTool File menu and select the file you want to open. You can open multiple files
in the HDF Import Tool.

• Open an HDF or HDF-EOS file by specifying the file name with the hdftool
command on the MATLAB command line:

hdftool('example.hdf')

6 Scientific Data

6-64

Viewing a File in the HDF Import Tool

When you open an HDF4 or HDF-EOS file in the HDF Import Tool, the tool displays the
contents of the file in the Contents pane. You can use this pane to navigate within the
file to see what data sets it contains. You can view the contents of HDF-EOS files as HDF
data sets or as HDF-EOS files. The icon in the contents pane indicates the view, as
illustrated in the following figure. Note that these are just two views of the same data.

View file as
HDF or
HDF-EOS

File name

Contents pane Metadata panel

Importing and
Subsetting
pane

Step 2: Selecting a Data Set in an HDF File
To import a data set, you must first select the data set in the contents pane of the HDF
Import Tool. Use the Contents pane to view the contents of the file and navigate to the
data set you want to import.

 Import HDF4 Files Interactively

6-65

For example, the following figure shows the data set Example SDS in the HDF file
selected. Once you select a data set, the Metadata panel displays information about the
data set and the importing and subsetting pane displays subsetting options available for
this type of HDF object.

Selected
data set

Data set
metadata

Subsetting
options for this
HDF object

Step 3: Specifying a Subset of the Data (Optional)

When you select a data set in the contents pane, the importing and subsetting pane
displays the subsetting options available for that type of HDF object. The subsetting

6 Scientific Data

6-66

options displayed vary depending on the type of HDF object. For more information, see
“Using the HDF Import Tool Subsetting Options” on page 6-68.

Step 4: Importing Data and Metadata

To import the data set you have selected, click the Import button, bottom right corner of
the Importing and Subsetting pane. Using the Importing and Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF Import Tool uses
the name of the HDF4 data set as the name of the MATLAB workspace variable. In
the following figure, the variable name is Example_SDS. To specify another name,
enter text in the Workspace Variable text box.

• Specify whether to import metadata associated with the data set — To import any
metadata that might be associated with the data set, select the Import Metadata
check box. To store the metadata, the HDF Import Tool creates a second variable in
the workspace with the same name with “_info” appended to it. For example, if you
select this check box, the name of the metadata variable for the data set in the figure
would be Example_SDS_info.

• Save the data set import command syntax — The Dataset import command text
window displays the MATLAB command used to import the data set. This text is not
editable, but you can copy and paste it into the MATLAB Command Window or a text
editor for reuse.

The following figure shows how to specify these options in the HDF Import Tool.
Import metadata
with data set

Specify name of
variable to store
data set

MATLAB command
used to import data

Click here to import
data set

 Import HDF4 Files Interactively

6-67

Step 5: Closing HDF Files and the HDF Import Tool
To close a file, select the file in the contents pane and click Close File on the HDF
Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on the HDF
Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or click the
Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,

h = hdftool('example.hdf')

you can use the close(h) command to close the tool from the MATLAB command line.

Using the HDF Import Tool Subsetting Options

Note The HDF Import Tool will be removed in a future release.

When you select a data set, the importing and subsetting pane displays the subsetting
options available for that type of data set. The following sections provide information
about these subsetting options for all supported data set types. For general information
about the HDF Import tool, see “Import HDF4 Files Interactively” on page 6-64.

• “HDF Scientific Data Sets (SD)” on page 6-69
• “HDF Vdata” on page 6-69
• “HDF-EOS Grid Data” on page 6-70
• “HDF-EOS Point Data” on page 6-75
• “HDF-EOS Swath Data” on page 6-76
• “HDF Raster Image Data” on page 6-79

Note To use these data subsetting options effectively, you must understand the HDF and
HDF-EOS data formats. Therefore, use this documentation in conjunction with the HDF
documentation (www.hdfgroup.org) and the HDF-EOS documentation
(www.hdfeos.org).

6 Scientific Data

6-68

http://www.hdfgroup.org
http://www.hdfeos.org

HDF Scientific Data Sets (SD)

The HDF scientific data set (SD) is a group of data structures used to store and describe
multidimensional arrays of scientific data. Using the HDF Import Tool subsetting
parameters, you can import a subset of an HDF scientific data set by specifying the
location, range, and number of values to be read along each dimension.

Subsetting
parameters

Dimension

The subsetting parameters are:

• Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

• Increment — Specifies the interval between the values to read. The default value is
1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The default value
is the length of the dimension, which causes all the data to be read.

HDF Vdata

HDF Vdata data sets provide a framework for storing customized tables. A Vdata table
consists of a collection of records whose values are stored in fixed-length fields. All
records have the same structure and all values in each field have the same data type.
Each field is identified by a name. The following figure illustrates a Vdata table.

 Import HDF4 Files Interactively

6-69

idx Dewpt

1

Temp

5

2 12 5

3 3 7

0

Fieldnames

Records

Fields

You can import a subset of an HDF Vdata data set in the following ways:

• Specifying the name of the field that you want to import
• Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for Vdata.

Specify field to subset

Specify where to
begin reading

Specify how many
records to read

HDF-EOS Grid Data

In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a known map
projection. The HDF Import Tool supports the following mutually exclusive subsetting
options for Grid data:

6 Scientific Data

6-70

• “Direct Index” on page 6-71
• “Geographic Box” on page 6-72
• “Interpolation” on page 6-72
• “Pixels” on page 6-73
• “Tile” on page 6-73
• “Time” on page 6-74
• “User-Defined” on page 6-74

To access these options, click the Subsetting method menu in the importing and
subsetting pane.
Click here to
see options

Direct Index

You can import a subset of an HDF-EOS Grid data set by specifying the location, range,
and number of values to be read along each dimension.

Each row represents a dimension in the data set and each column represents these
subsetting parameters:

 Import HDF4 Files Interactively

6-71

• Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

• Increment — Specifies the interval between the values to read. The default value is
1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The default value
is the length of the dimension, which causes all the data to be read.

Geographic Box

You can import a subset of an HDF-EOS Grid data set by specifying the rectangular area
of the grid that you are interested in. To define this rectangular area, you must specify
two points, using longitude and latitude in decimal degrees. These points are two corners
of the rectangular area. Typically, Corner 1 is the upper-left corner of the box, and
Corner 2 is the lower-right corner of the box.

Optionally, you can further define the subset of data you are interested in by using Time
on page 6-74 parameters (see “Time” on page 6-74) or by specifying other User-Defined
on page 6-74 subsetting parameters (see “User-Defined” on page 6-74).
Interpolation

Interpolation is the process of estimating a pixel value at a location in between other
pixels. In interpolation, the value of a particular pixel is determined by computing the
weighted average of some set of pixels in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points that are
corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

6 Scientific Data

6-72

• Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box

Pixels

You can import a subset of the pixels in a Grid data set by defining a rectangular area
over the grid. You define the region used for bilinear interpolation by specifying two
points that are corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box

Tile

In HDF-EOS Grid data, a rectilinear grid overlays a map. Each rectangle defined by the
horizontal and vertical lines of the grid is referred to as a tile. If the HDF-EOS Grid data
is stored as tiles, you can import a subset of the data by specifying the coordinates of the
tile you are interested in. Tile coordinates are 1-based, with the upper-left corner of a

 Import HDF4 Files Interactively

6-73

two-dimensional data set identified as 1,1. In a three-dimensional data set, this tile
would be referenced as 1,1,1.

Time

You can import a subset of the Grid data set by specifying a time period. You must
specify both the start time and the stop time (the endpoint of the time span). The units
(hours, minutes, seconds) used to specify the time are defined by the data set.

Along with these time parameters, you can optionally further define the subset of data to
import by supplying user-defined on page 6-74 parameters.
User-Defined

You can import a subset of the Grid data set by specifying user-defined subsetting
parameters.

6 Scientific Data

6-74

When specifying user-defined parameters, you must first specify whether you are
subsetting along a dimension or by field. Select the dimension or field by name using the
Dimension or Field Name menu. Dimension names are prefixed with the characters
DIM:.

Once you specify the dimension or field, you use Min and Max to specify the range of
values that you want to import. For dimensions, Min and Max represent a range of
elements. For fields, Min and Max represent a range of values.

HDF-EOS Point Data

HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS Point data
set by specifying field names and level. Optionally, you can refine the subsetting by
specifying the range of records you want to import, by defining a rectangular area, or by
specifying a time period. For information about specifying a rectangular area, see
“Geographic Box” on page 6-72. For information about subsetting by time, see “Time” on
page 6-74.

 Import HDF4 Files Interactively

6-75

HDF-EOS Swath Data

HDF-EOS Swath data is data that is produced by a satellite as it traces a path over the
earth. This path is called its ground track. The sensor aboard the satellite takes a series
of scans perpendicular to the ground track. Swath data can also include a vertical
measure as a third dimension. For example, this vertical dimension can represent the
height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting options for
Swath data:

• “Direct Index” on page 6-76
• “Geographic Box” on page 6-77
• “Time” on page 6-78
• “User-Defined” on page 6-78

To access these options, click the Subsetting method menu in the Importing and
Subsetting pane.
Click here to
select a subsetting
option

Direct Index

You can import a subset of an HDF-EOS Swath data set by specifying the location,
range, and number of values to be read along each dimension.

6 Scientific Data

6-76

Each row represents a dimension in the data set and each column represents these
subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

• Increment — Specifies the interval between the values to read. The default value is
1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The default value
is the length of the dimension, which causes all the data to be read.

Geographic Box

You can import a subset of an HDF-EOS Swath data set by specifying the rectangular
area of the grid that you are interested in and by specifying the selection Mode.

You define the rectangular area by specifying two points that specify two corners of the
box:

 Import HDF4 Files Interactively

6-77

• Corner 1 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track Inclusion and the
Geolocation mode. The Cross Track Inclusion value determines how much of the
area of the geographic box that you define must fall within the boundaries of the swath.

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.
• Midpoint — At least half of the box overlaps with the swath.
• Endpoint — All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data must be in
the same swath.

Select from these values:

• Internal — Geolocation fields and data fields must be in the same swath.
• External — Geolocation fields and data fields can be in different swaths.

Time

You can optionally also subset swath data by specifying a time period. The units used
(hours, minutes, seconds) to specify the time are defined by the data set

User-Defined

You can optionally also subset a swath data set by specifying user-defined parameters.

6 Scientific Data

6-78

When specifying user-defined parameters, you must first specify whether you are
subsetting along a dimension or by field. Select the dimension or field by name using the
Dimension or Field Name menu. Dimension names are prefixed with the characters
DIM:.

Once you specify the dimension or field, you use Min and Max to specify the range of
values that you want to import. For dimensions, Min and Max represent a range of
elements. For fields, Min and Max represent a range of values.

HDF Raster Image Data

For 8-bit HDF raster image data, you can specify the colormap.

 Import HDF4 Files Interactively

6-79

About HDF4 and HDF-EOS
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard
for storing scientific data in files, developed by the National Center for Supercomputing
Applications (NCSA). For more information about these file formats, read the HDF
documentation at the HDF Web site (www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and
Space Administration (NASA) for storage of data returned from the Earth Observing
System (EOS). For more information about this extension to HDF4, see the HDF-EOS
documentation at the NASA Web site (www.hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines. To import
or export data, you must use the functions in the HDF4 API associated with the
particular HDF4 data type you are working with. Each API has a particular
programming model, that is, a prescribed way to use the routines to write data sets to
the file. MATLAB functions allow you to access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with the HDF
library. For detailed information about HDF4 features and routines, refer to the
documentation at the HDF Web site.

6 Scientific Data

6-80

http://www.hdfgroup.org
http://www.hdfeos.org

Export to HDF4 Files
In this section...
“Write MATLAB Data to HDF4 File” on page 6-81
“Manage HDF4 Identifiers” on page 6-83

Write MATLAB Data to HDF4 File

This example shows how to write MATLAB® arrays to a Scientific Data Set in an HDF4
file.

Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Prefix subsequent calls to functions in the matlat.io.hdf4.sd package with sd, rather
than the entire package path.

Create HDF4 File

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This function
corresponds to the SD API routine, SDstart.

sdID = sd.start('mydata.hdf','create');

sd.start creates the file and returns a file identifier named sdID.

To open an existing file instead of creating a new one, call sd.start with 'write'
access instead of 'create'.

Create HDF4 Data Set

Create a data set in the file for each MATLAB array you want to export. If you are
writing to an existing data set, you can skip ahead to the next step. In this example,
create one data set for the array of sample data, A, using the
matlab.io.hdf4.sd.create function. This function corresponds to the SD API
routine, SDcreate. The ds_type argument is a character vector specifying the
MATLAB data type of the data set.

 Export to HDF4 Files

6-81

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];
ds_name = 'A';
ds_type = 'double';
ds_dims = size(A);
sdsID = sd.create(sdID,ds_name,ds_type,ds_dims);

sd.create returns an HDF4 SD data set identifier, sdsID.

Write MATLAB Data to HDF4 File

Write data in A to the data set in the file using the matlab.io.hdf4.sd.writedata
function. This function corresponds to the SD API routine, SDwritedata. The start
argument specifies the zero-based starting index.

start = [0 0];
sd.writeData(sdsID,start,A);

sd.writeData queues the write operation. Queued operations execute when you close
the HDF4 file.

Write MATLAB Data to Portion of Data Set

Replace the second row of the data set with the vector B. Use a start input value of [1
0] to begin writing at the second row, first column. start uses zero-based indexing.

B = [9 9 9 9 9];
start = [1 0];
sd.writeData(sdsID,start,B);

Write Metadata to HDF4 File

Create a global attribute named creation_date, with a value that is the current date
and time. Use the matlab.io.hdf4.sd.setAttr function, which corresponds to the SD
API routine, SDsetattr.

sd.setAttr(sdID,'creation_date',datestr(now));

sd.Attr creates a file attribute, also called a global attribute, associated with the HDF4
file identified by sdID.

Associate a predefined attribute, cordsys, to the data set identified by sdsID. Possible
values of this attribute include the text strings 'cartesian', 'polar', and
'spherical'.

6 Scientific Data

6-82

attr_name = 'cordsys';
attr_value = 'polar';
sd.setAttr(sdsID,attr_name,attr_value);

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This
function corresponds to the SD API routine, SDendaccess. You must close access to all
the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID);

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function
corresponds to the SD API routine, SDend.

sd.close(sdID);

Closing an HDF4 file executes all the write operations that have been queued using
SDwritedata.

Manage HDF4 Identifiers

MATLAB supports utility functions that make it easier to use HDF4 in the MATLAB
environment.

• “View All Open HDF4 Identifiers” on page 6-83
• “Close All Open HDF4 Identifiers” on page 6-84

View All Open HDF4 Identifiers

Use the gateway function to the MATLAB HDF4 utility API, hdfml, and specify the
name of the listinfo routine as an argument to view all the currently open HDF4
identifiers. MATLAB updates this list whenever HDF identifiers are created or closed. In
this example only two identifiers are open.

hdfml('listinfo')

No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers

 Export to HDF4 Files

6-83

No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
 262144
Open scientific data file identifiers:
 393216
No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Close All Open HDF4 Identifiers

Close all the currently open HDF4 identifiers in a single call using the gateway function
to the MATLAB HDF4 utility API, hdfml. Specify the name of the closeall routine as
an argument:

hdfml('closeall')

See Also
hdfml | sd.close | sd.create | sd.endAccess | sd.setAttr | sd.start |
sd.writeData

More About
• “Map HDF4 to MATLAB Syntax” on page 6-58

6 Scientific Data

6-84

Audio and Video

• “Read and Write Audio Files” on page 7-2
• “Record and Play Audio” on page 7-5
• “Get Information about Video Files” on page 7-10
• “Read Video Files” on page 7-11
• “Supported Video File Formats” on page 7-16
• “Convert Between Image Sequences and Video” on page 7-19
• “Export to Video” on page 7-23
• “Characteristics of Audio Files” on page 7-25

7

Read and Write Audio Files
This example shows how to write data to an audio file, get information about the file, and
then read data from the audio file.

Write to Audio File

Load sample data from the file, handel.mat
load handel.mat

The workspace now contains a matrix of audio data, y, and a sample rate, Fs.

Use the audiowrite function to write the data to a WAVE file named handel.wav in
the current folder.

audiowrite('handel.wav',y,Fs)
clear y Fs

The audiowrite function also can write to other audio file formats such as OGG, FLAC,
and MPEG-4 AAC.

Get Information About Audio File

Use the audioinfo function to get information about the WAVE file, handel.wav.

info = audioinfo('handel.wav')

info =
 Filename: 'pwd\handel.wav'
 CompressionMethod: 'Uncompressed'
 NumChannels: 1
 SampleRate: 8192
 TotalSamples: 73113
 Duration: 8.9249
 Title: []
 Comment: []
 Artist: []
 BitsPerSample: 16

audioinfo returns a 1-by-1 structure array. The SampleRate field indicates the sample
rate of the audio data, in hertz. The Duration field indicates the duration of the file, in
seconds.

7 Audio and Video

7-2

Read Audio File

Use the audioread function to read the file, handel.wav. The audioread function can
support WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.

[y,Fs] = audioread('handel.wav');

Play the audio.

sound(y,Fs)

You also can read WAV, AU, or SND files interactively. Select Import Data or
double-click the file name in the Current Folder browser.

Plot Audio Data

Create a vector t the same length as y, that represents elapsed time.

t = 0:seconds(1/Fs):seconds(info.Duration);
t = t(1:end-1);

Plot the audio data as a function of time.

plot(t,y)
xlabel('Time')
ylabel('Audio Signal')

 Read and Write Audio Files

7-3

See Also
audioinfo | audioread | audiowrite

Related Examples
• “Import Images, Audio, and Video Interactively” on page 1-9

7 Audio and Video

7-4

Record and Play Audio
In this section...
“Record Audio” on page 7-5
“Play Audio” on page 7-7
“Record or Play Audio within a Function” on page 7-8

Record Audio

To record data from an audio input device (such as a microphone connected to your
system) for processing in MATLAB:

1 Create an audiorecorder object.
2 Call the record or recordblocking method, where:

• record returns immediate control to the calling function or the command prompt
even as recording proceeds. Specify the length of the recording in seconds, or end
the recording with the stop method. Optionally, call the pause and resume
methods. The recording is performed asynchronously.

• recordblocking retains control until the recording is complete. Specify the
length of the recording in seconds. The recording is performed synchronously.

3 Create a numeric array corresponding to the signal data using the getaudiodata
method.

The following examples show how to use the recordblocking and record methods.

Record Microphone Input

This example shows how to record microphone input, play back the recording, and store
the recorded audio signal in a numeric array. You must first connect a microphone to
your system.

Create an audiorecorder object named recObj for recording audio input.

recObj = audiorecorder

recObj =

 Record and Play Audio

7-5

 audiorecorder with properties:

 SampleRate: 8000
 BitsPerSample: 8
 NumberOfChannels: 1
 DeviceID: -1
 CurrentSample: 1
 TotalSamples: 0
 Running: 'off'
 StartFcn: []
 StopFcn: []
 TimerFcn: []
 TimerPeriod: 0.0500
 Tag: ''
 UserData: []
 Type: 'audiorecorder'

audiorecorder creates an 8000 Hz, 8-bit, 1-channel audiorecorder object.

Record your voice for 5 seconds.

disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

Play back the recording.

play(recObj);

Store data in double-precision array, y.

y = getaudiodata(recObj);

Plot the audio samples.

plot(y);

Record Two Channels from Different Sound Cards

To record audio independently from two different sound cards, with a microphone
connected to each:

1 Call audiodevinfo to list the available sounds cards. For example, this code
returns a structure array containing all input and output audio devices on your
system:

7 Audio and Video

7-6

info = audiodevinfo;

Identify the sound cards you want to use by name, and note their ID values.
2 Create two audiorecorder objects. For example, this code creates the

audiorecorder object, recorder1, for recording a single channel from device 3 at
44.1 kHz and 16 bits per sample. The audiorecorder object, recorder2, is for
recording a single channel from device 4 at 48 kHz:

recorder1 = audiorecorder(44100,16,1,3);
recorder2 = audiorecorder(48000,16,1,4);

3 Record each audio channel separately.

record(recorder1);
record(recorder2);
pause(5);

The recordings occur simultaneously as the first call to record does not block.
4 Stop the recordings.

stop(recorder1);
stop(recorder2);

Specify the Quality of the Recording

By default, an audiorecorder object uses a sample rate of 8000 hertz, a depth of 8 bits
(8 bits per sample), and a single audio channel. These settings minimize the required
amount of data storage. For higher quality recordings, increase the sample rate or bit
depth.

For example, typical compact disks use a sample rate of 44,100 hertz and a 16-bit depth.
Create an audiorecorder object to record in stereo (two channels) with those settings:

myRecObj = audiorecorder(44100, 16, 2);

For more information on the available properties and values, see the audiorecorder
reference page.

Play Audio

After you import or record audio, MATLAB supports several ways to listen to the data:

 Record and Play Audio

7-7

• For simple playback using a single function call, use sound or soundsc. For example,
load a sample MAT-file that contains signal and sample rate data, and listen to the
audio:
load chirp.mat;
sound(y, Fs);

• For more flexibility during playback, including the ability to pause, resume, or define
callbacks, use the audioplayer function. Create an audioplayer object, then call
methods to play the audio. For example, listen to the gong sample file:

load gong.mat;
gong = audioplayer(y, Fs);
play(gong);

For an additional example, see “Record or Play Audio within a Function” on page 7-
8.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any playback,
specify smaller sample rates to play back more slowly, and larger sample rates to play
back more quickly.

Note Most sound cards support sample rates between approximately 5,000 and 48,000
hertz. Specifying sample rates outside this range can produce unexpected results.

Record or Play Audio within a Function
If you create an audioplayer or audiorecorder object inside a function, the object
exists only for the duration of the function. For example, create a player function called
playFile and a simple callback function showSeconds:

function playFile(myfile)
 load(myfile);

 obj = audioplayer(y, Fs);
 obj.TimerFcn = 'showSeconds';
 obj.TimerPeriod = 1;

 play(obj);
end

function showSeconds

7 Audio and Video

7-8

 disp('tick')
end

Call playFile from the command prompt to play the file handel.mat:

playFile('handel.mat')

At the recorded sample rate of 8192 samples per second, playing the 73113 samples in
the file takes approximately 8.9 seconds. However, the playFile function typically ends
before playback completes, and clears the audioplayer object obj.

To ensure complete playback or recording, consider the following options:

• Use playblocking or recordblocking instead of play or record. The blocking
methods retain control until playing or recording completes. If you block control, you
cannot issue any other commands or methods (such as pause or resume) during the
playback or recording.

• Create an output argument for your function that generates an object in the base
workspace. For example, modify the playFile function to include an output
argument:

function obj = playFile(myfile)

Call the function:

h = playFile('handel.mat');

Because h exists in the base workspace, you can pause playback from the command
prompt:

pause(h)

See Also
audioplayer | audiorecorder | sound | soundsc

More About
• “Read and Write Audio Files” on page 7-2

 See Also

7-9

Get Information about Video Files
VideoReader creates an object that contains properties of the video file, including the
duration, frame rate, format, height, and width. To view these properties, or store them
in a structure, use the get method. For example, get the properties of the file
xylophone.mp4:

xyloObj = VideoReader('xylophone.mp4');
info = get(xyloObj)

The get function returns:

info =

 Duration: 4.7000
 Name: 'xylophone.mp4'
 Path: 'matlabroot\toolbox\matlab\audiovideo'
 Tag: ''
 UserData: []
 BitsPerPixel: 24
 FrameRate: 30
 Height: 240
 VideoFormat: 'RGB24'
 Width: 320
 CurrentTime: 0

To access a specific property of the object, such as Duration, use dot notation as follows:

duration = xyloObj.Duration;

7 Audio and Video

7-10

Read Video Files

In this section...
“Read All Frames in Video File” on page 7-11
“Read All Frames Beginning at Specified Time” on page 7-12
“Read Video Frames Within Specified Time Interval” on page 7-13
“Troubleshooting” on page 7-14

Read All Frames in Video File

This example shows how to read and store data from all frames in a video file, display
one frame, and then play all frames at the video's frame rate.

Construct a VideoReader object associated with the sample file, xylophone.mp4.

vidObj = VideoReader('xylophone.mp4');

Determine the height and width of the frames.

vidHeight = vidObj.Height;
vidWidth = vidObj.Width;

Create a MATLAB movie structure array, s.

s = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),...
 'colormap',[]);

Read one frame at a time using readFrame until the end of the file is reached. Append
data from each video frame to the structure array.

k = 1;
while hasFrame(vidObj)
 s(k).cdata = readFrame(vidObj);
 k = k+1;
end

Get information about the movie structure array, s.

whos s

 Read Video Files

7-11

 Name Size Bytes Class Attributes

 s 1x141 32503552 struct

s is a 1-by-141 structure array, containing data from the 141 frames in the video file.

Display the fifth frame stored in s.

image(s(5).cdata)

Resize the current figure and axes based on the video's width and height. Then, play the
movie once at the video's frame rate using the movie function.

set(gcf,'position',[150 150 vidObj.Width vidObj.Height]);
set(gca,'units','pixels');
set(gca,'position',[0 0 vidObj.Width vidObj.Height]);
movie(s,1,vidObj.FrameRate);

Close the figure.

close

Read All Frames Beginning at Specified Time

Read part of a video file starting 0.5 second from the beginning of the file.

Construct a VideoReader object associated with the sample file, 'xylophone.mp4'.

vidObj = VideoReader('xylophone.mp4');

Specify that reading should begin 0.5 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.5;

Create an axes to display the video. Then, read video frames until the end of the file is
reached.

currAxes = axes;
while hasFrame(vidObj)
 vidFrame = readFrame(vidObj);
 image(vidFrame, 'Parent', currAxes);
 currAxes.Visible = 'off';

7 Audio and Video

7-12

 pause(1/vidObj.FrameRate);
end

Read Video Frames Within Specified Time Interval

Read part of a video file from 0.6 to 0.9 second.

Construct a VideoReader object associated with the sample file, 'xylophone.mp4'.

vidObj = VideoReader('xylophone.mp4');

Create a MATLAB® movie structure array, s.

 Read Video Files

7-13

s = struct('cdata',zeros(vidObj.Height,vidObj.Width,3,'uint8'),...
 'colormap',[]);

Specify that reading should begin 0.6 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.6;

Read one frame at a time until the CurrentTime reaches 0.9 second. Append data from
each video frame to the structure array, s.

k = 1;
while vidObj.CurrentTime <= 0.9
 s(k).cdata = readFrame(vidObj);
 k = k+1;
end

View the number of frames in s.

whos s

 Name Size Bytes Class Attributes

 s 1x10 2305432 struct

s is a 1-by-10 structure showing that 10 frames were read.

View the CurrentTime property of the VideoReader object.

vidObj.CurrentTime

ans =

 0.9333

The CurrentTime property is now greater than 0.9.

Troubleshooting

Unable to Read Last Frame of Video File:

7 Audio and Video

7-14

• The hasFrame method might return logical 1 (true) when the value of the
CurrentTime property is equal to the value of the Duration property. This is due to
a limitation in the underlying APIs used.

• Avoid seeking to the last frame in a video file by setting the CurrentTime property to
a value close to the Duration value. For some files, this operation returns an error
indicating that the end-of-file has been reached, even though the CurrentTime value
is less than the Duration value. This typically occurs if the file duration is larger
than the duration of the video stream, and there is no video available to read near the
end of the file.

• Do not use the Duration property to limit the reading of data from a video file. It is
best to read data until the file reports that there are no more frames available to read.
That is, use the hasFrame method to check whether there is a frame available to
read.

Video Reading Performance on Windows Systems:

• To achieve better video reader performance on Windows for MP4 and MOV files,
MATLAB uses the system’s graphics hardware for decoding. However, in some cases
using the graphics card for decoding can result in poorer performance depending on
the specific graphics hardware on the system. If you notice slower video reader
performance on your system, turn off the hardware acceleration by typing:

matlab.video.read.UseHardwareAcceleration('off')

Hardware acceleration can be reenabled by typing:

matlab.video.read.UseHardwareAcceleration('on')

See Also
VideoReader | mmfileinfo | movie

More About
• “Supported Video File Formats” on page 7-16

 See Also

7-15

Supported Video File Formats

In this section...
“What Are Video Files?” on page 7-16
“Formats That VideoReader Supports” on page 7-16
“View Codec Associated with Video File” on page 7-17
“Troubleshooting: Errors Reading Video File” on page 7-18

What Are Video Files?

For video data, the term “file format” often refers to either the container format or the
codec. A container format describes the layout of the file, while a codec describes how to
encode/decode the video data. Many container formats can hold data encoded with
different codecs.

To read a video file, any application must:

• Recognize the container format (such as AVI).
• Have access to the codec that can decode the video data stored in the file. Some codecs

are part of standard Windows and Macintosh system installations, and allow you to
play video in Windows Media Player or QuickTime. In MATLAB, VideoReader can
access most, but not all, of these codecs.

• Properly use the codec to decode the video data in the file. VideoReader cannot
always read files associated with codecs that were not part of your original system
installation.

Formats That VideoReader Supports

Use VideoReader to read video files in MATLAB. The file formats that VideoReader
supports vary by platform, and have no restrictions on file extensions.
Platforms File Formats
All Platforms AVI, including uncompressed, indexed,

grayscale, and Motion JPEG-encoded video
(.avi)
Motion JPEG 2000 (.mj2)

7 Audio and Video

7-16

Platforms File Formats
All Windows MPEG-1 (.mpg)

Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft
DirectShow

Windows 7 or later MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
Any format supported by Microsoft Media
Foundation

Macintosh Most formats supported by QuickTime
Player, including:
MPEG-1 (.mpg)
MPEG-4, including H.264 encoded video
(.mp4, .m4v)
Apple QuickTime Movie (.mov)
3GPP
3GPP2
AVCHD
DV

Note: For OS X Yosemite (Version 10.10)
and later, MPEG-4/H.264 files written
using VideoWriter, play correctly, but
display an inexact frame rate.

Linux Any format supported by your installed
plug-ins for GStreamer 1.0 or higher, as
listed on http://gstreamer.freedesktop.org/
documentation/plugins.html, including Ogg
Theora (.ogg).

View Codec Associated with Video File

This example shows how to view the codec associated with a video file, using the
mmfileinfo function.

 Supported Video File Formats

7-17

http://gstreamer.freedesktop.org/documentation/plugins.html
http://gstreamer.freedesktop.org/documentation/plugins.html

Store information about the sample video file, shuttle.avi, in a structure array named
info. The info structure contains the following fields: Filename, Path, Duration,
Audio and Video.

info = mmfileinfo('shuttle.avi');

Show the properties in the command window by displaying the fields of the info
structure. For example, to view information under the Video field, type info.Video
info.Video

ans = struct with fields:
 Format: 'MJPG'
 Height: 288
 Width: 512

The file, shuttle.avi, uses the Motion JPEG codec.

Troubleshooting: Errors Reading Video File

You might be unable to read a video file if MATLAB cannot access the appropriate codec.
64-bit applications use 64-bit codec libraries, while 32-bit applications use 32-bit codec
libraries. For example, when working with 64-bit MATLAB, you cannot read video files
that require access to a 32-bit codec installed on your system. To read these files, try one
of the following:

• Install a 64-bit codec that supports this file format. Then, try reading the file using
64-bit MATLAB.

• Re-encode the file into a different format with a 64-bit codec that is installed on your
computer.

Sometimes, VideoReader cannot open a video file for reading on Windows platforms.
This might occur if you have installed a third-party codec that overrides your system
settings. Uninstall the codec and try opening the video file in MATLAB again.

7 Audio and Video

7-18

Convert Between Image Sequences and Video
This example shows how to convert between video files and sequences of image files
using VideoReader and VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames to image
files using VideoReader and the imwrite function. Then, convert the image files to an
AVI file using VideoWriter.

Setup

Create a temporary working folder to store the image sequence.

workingDir = tempname;
mkdir(workingDir)
mkdir(workingDir,'images')

Create VideoReader

Create a VideoReader to use for reading frames from the file.

shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array named
img. Write out each image to a JPEG file with a name in the form imgN.jpg, where N is
the frame number.

| img001.jpg|

| img002.jpg|

| ...|

| img121.jpg|

ii = 1;

while hasFrame(shuttleVideo)
 img = readFrame(shuttleVideo);
 filename = [sprintf('%03d',ii) '.jpg'];
 fullname = fullfile(workingDir,'images',filename);

 Convert Between Image Sequences and Video

7-19

 imwrite(img,fullname) % Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
 ii = ii+1;
end

Find Image File Names

Find all the JPEG file names in the images folder. Convert the set of image names to a
cell array.

imageNames = dir(fullfile(workingDir,'images','*.jpg'));
imageNames = {imageNames.name}';

Create New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by default.

outputVideo = VideoWriter(fullfile(workingDir,'shuttle_out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo)

Loop through the image sequence, load each image, and then write it to the video.

for ii = 1:length(imageNames)
 img = imread(fullfile(workingDir,'images',imageNames{ii}));
 writeVideo(outputVideo,img)
end

Finalize the video file.

close(outputVideo)

View the Final Video

Construct a reader object.

shuttleAvi = VideoReader(fullfile(workingDir,'shuttle_out.avi'));

Create a MATLAB movie struct from the video frames.

ii = 1;
while hasFrame(shuttleAvi)
 mov(ii) = im2frame(readFrame(shuttleAvi));
 ii = ii+1;
end

7 Audio and Video

7-20

Resize the current figure and axes based on the video's width and height, and view the
first frame of the movie.

figure
imshow(mov(1).cdata, 'Border', 'tight')

Play back the movie once at the video's frame rate.

movie(mov,1,shuttleAvi.FrameRate)

 Convert Between Image Sequences and Video

7-21

Credits

Video of the Space Shuttle courtesy of NASA.

7 Audio and Video

7-22

Export to Video
To create an Audio/Video Interleaved (AVI) file from MATLAB graphics animations or
from still images, follow these steps:

1 Create a VideoWriter object by calling the VideoWriter function. For example:

myVideo = VideoWriter('myfile.avi');

By default, VideoWriter prepares to create an AVI file using Motion JPEG
compression. To create an uncompressed file, specify the Uncompressed AVI
profile, as follows:

uncompressedVideo = VideoWriter('myfile.avi', 'Uncompressed AVI');
2 Optionally, adjust the frame rate (number of frames to display per second) or the

quality setting (a percentage from 0 through 100). For example:

myVideo.FrameRate = 15; % Default 30
myVideo.Quality = 50; % Default 75

Note Quality settings only apply to compressed files. Higher quality settings result
in higher video quality, but also increase the file size. Lower quality settings
decrease the file size and video quality.

3 Open the file:

open(myVideo);

Note After you call open, you cannot change the frame rate or quality settings.
4 Write frames, still images, or an existing MATLAB movie to the file by calling

writeVideo. For example, suppose that you have created a MATLAB movie called
myMovie. Write your movie to a file:

writeVideo(myVideo, myMovie);

Alternatively, writeVideo accepts single frames or arrays of still images as the
second input argument. For more information, see the writeVideo reference page.

5 Close the file:

close(myVideo);

 Export to Video

7-23

See Also
VideoWriter

7 Audio and Video

7-24

Characteristics of Audio Files
The audio signal in a file represents a series of samples that capture the amplitude of the
sound over time. The sample rate is the number of discrete samples taken per second and
given in hertz. The precision of the samples, measured by the bit depth (number of bits
per sample), depends on the available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in an m-by-1
column vector, and stereo data in an m-by-2 matrix. In either case, m is the number of
samples. For stereo data, the first column contains the left channel, and the second
column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some cases,
particularly when the audio hardware does not support high bit depths, audio files store
the values as 8-bit or 16-bit integers. The range of the sample values depends on the
available number of bits. For example, samples stored as uint8 values can range from 0
to 255 (28 – 1). The MATLAB sound and soundsc functions support only single- or
double-precision values between -1 and 1. Other audio functions support multiple data
types, as indicated on the function reference pages.

 Characteristics of Audio Files

7-25

XML Documents

• “Importing XML Documents” on page 8-2
• “Exporting to XML Documents” on page 8-6

8

Importing XML Documents
To read an XML file from your local disk or from a URL, use the xmlread function.
xmlread returns the contents of the file in a Document Object Model (DOM) node. For
more information, see:

• “What Is an XML Document Object Model (DOM)?” on page 8-2
• “Example — Finding Text in an XML File” on page 8-3

What Is an XML Document Object Model (DOM)?

In a Document Object Model, every item in an XML file corresponds to a node. The
properties and methods for DOM nodes (that is, the way you create and access nodes)
follow standards set by the World Wide Web consortium.

For example, consider this sample XML file:
<productinfo
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">

<!-- This is a sample info.xml file. -->

<list>

<listitem>
<label>Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

<listitem>
<label>Profiler</label>
<callback>profile viewer</callback>
<icon>ApplicationIcon.PROFILER</icon>
</listitem>

</list>
</productinfo>

The information in the file maps to the following types of nodes in a DOM:

• Element nodes — Corresponds to tag names. In the sample info.xml file, these tags
correspond to element nodes:

• productinfo

8 XML Documents

8-2

• list
• listitem
• label
• callback
• icon

In this case, the list element is the parent of listitem element child nodes. The
productinfo element is the root element node.

• Text nodes — Contains values associated with element nodes. Every text node is the
child of an element node. For example, the Import Wizard text node is the child of
the first label element node.

• Attribute nodes — Contains name and value pairs associated with an element node.
For example, xmlns:xsi is the name of an attribute and http://www.w3.org/
2001/XMLSchema-instance is its value. Attribute nodes are not parents or children
of any nodes.

• Comment nodes — Includes additional text in the file, in the form <!--Sample
comment-->.

• Document nodes — Corresponds to the entire file. Use methods on the document node
to create new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom
package description at https://docs.oracle.com/javase/7/docs/api.

Example — Finding Text in an XML File

The full matlabroot/toolbox/matlab/general/info.xml file contains several
listitem elements, such as:

<listitem>
<label>Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

One of the label elements has the child text Plot Tools. Suppose that you want to
find the text for the callback element in the same listitem. Follow these steps:

 Importing XML Documents

8-3

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

1 Initialize your variables, and call xmlread to obtain the document node:

findLabel = 'Plot Tools';
findCbk = '';

xDoc = xmlread(fullfile(matlabroot, ...
 'toolbox','matlab','general','info.xml'));

2 Find all the listitem elements. The getElementsByTagName method returns a
deep list that contains information about the child nodes:

allListitems = xDoc.getElementsByTagName('listitem');

Note Lists returned by DOM methods use zero-based indexing.
3 For each listitem, compare the text for the label element to the text you want to

find. When you locate the correct label, get the callback text:

for k = 0:allListitems.getLength-1
 thisListitem = allListitems.item(k);

 % Get the label element. In this file, each
 % listitem contains only one label.
 thisList = thisListitem.getElementsByTagName('label');
 thisElement = thisList.item(0);

 % Check whether this is the label you want.
 % The text is in the first child node.
 if strcmp(thisElement.getFirstChild.getData, findLabel)
 thisList = thisListitem.getElementsByTagName('callback');
 thisElement = thisList.item(0);
 findCbk = char(thisElement.getFirstChild.getData);
 break;
 end

end

4 Display the final results:

if ~isempty(findCbk)
 msg = sprintf('Item "%s" has a callback of "%s."',...
 findLabel, findCbk);
else
 msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

8 XML Documents

8-4

For an additional example that creates a structure array to store data from an XML file,
see the xmlread function reference page.

 Importing XML Documents

8-5

Exporting to XML Documents
To write data to an XML file, use the xmlwrite function. xmlwrite requires that you
describe the file in a Document Object Model (DOM) node. For an introduction to DOM
nodes, see “What Is an XML Document Object Model (DOM)?” on page 8-2

For more information, see:

• “Creating an XML File” on page 8-6
• “Updating an Existing XML File” on page 8-8

Creating an XML File

Although each file is different, these are common steps for creating an XML document:

1 Create a document node and define the root element by calling this method:

docNode = com.mathworks.xml.XMLUtils.createDocument('root_element');
2 Get the node corresponding to the root element by calling getDocumentElement.

The root element node is required for adding child nodes.
3 Add element, text, comment, and attribute nodes by calling methods on the

document node. Useful methods include:

• createElement
• createTextNode
• createComment
• setAttribute

For a complete list of the methods and properties of DOM nodes, see the
org.w3c.dom package description at https://docs.oracle.com/javase/7/
docs/api.

4 As needed, define parent/child relationships by calling appendChild on the parent
node.

Tip Text nodes are always children of element nodes. To add a text node, call
createTextNode on the document node, and then call appendChild on the parent
element node.

8 XML Documents

8-6

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

Example — Creating an XML File with xmlwrite

Suppose that you want to create an info.xml file for the Upslope Area Toolbox
(described in “Display Custom Documentation”), as follows:
<?xml version="1.0" encoding="utf-8"?>
<toc version="2.0">
 <tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions -->
 <tocitem target="demFlow_help.html">demFlow</tocitem>
 <tocitem target="facetFlow_help.html">facetFlow</tocitem>
 <tocitem target="flowMatrix_help.html">flowMatrix</tocitem>
 <tocitem target="pixelFlow_help.html">pixelFlow</tocitem>
 </tocitem>
</toc>

To create this file using xmlwrite, follow these steps:

1 Create the document node and root element, toc:

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');
2 Identify the root element, and set the version attribute:

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

3 Add the tocitem element node for the product page. Each tocitem element in this
file has a target attribute and a child text node:

product = docNode.createElement('tocitem');
product.setAttribute('target','upslope_product_page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product)

4 Add the comment:

product.appendChild(docNode.createComment(' Functions '));
5 Add a tocitem element node for each function, where the target is of the form

function_help.html:

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)
 curr_node = docNode.createElement('tocitem');

 curr_file = [functions{idx} '_help.html'];
 curr_node.setAttribute('target',curr_file);

 % Child text is the function name.
 curr_node.appendChild(docNode.createTextNode(functions{idx}));

 Exporting to XML Documents

8-7

 product.appendChild(curr_node);
end

6 Export the DOM node to info.xml, and view the file with the type function:

xmlwrite('info.xml',docNode);
type('info.xml');

Updating an Existing XML File

To change data in an existing file, call xmlread to import the file into a DOM node.
Traverse the node and add or change data using methods defined by the World Wide Web
consortium, such as:

• getElementsByTagName
• getFirstChild
• getNextSibling
• getNodeName
• getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite the file.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom
package description at https://docs.oracle.com/javase/7/docs/api.

For examples that use these methods, see:

• “Example — Finding Text in an XML File” on page 8-3
• “Example — Creating an XML File with xmlwrite” on page 8-7
• xmlread and xmlwrite

8 XML Documents

8-8

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

Memory-Mapping Data Files

• “Overview of Memory-Mapping” on page 9-2
• “Map File to Memory” on page 9-6
• “Read from Mapped File” on page 9-12
• “Write to Mapped File” on page 9-18
• “Delete Memory Map” on page 9-25
• “Share Memory Between Applications” on page 9-26

9

Overview of Memory-Mapping

In this section...
“What Is Memory-Mapping?” on page 9-2
“Benefits of Memory-Mapping” on page 9-2
“When to Use Memory-Mapping” on page 9-4
“Maximum Size of a Memory Map” on page 9-5
“Byte Ordering” on page 9-5

What Is Memory-Mapping?

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk
to a range of addresses within an application's address space. The application can then
access files on disk in the same way it accesses dynamic memory. This makes file reads
and writes faster in comparison with using functions such as fread and fwrite.

Benefits of Memory-Mapping

The principal benefits of memory-mapping are efficiency, faster file access, the ability to
share memory between applications, and more efficient coding.

Faster File Access

Accessing files via memory map is faster than using I/O functions such as fread and
fwrite. Data are read and written using the virtual memory capabilities that are built
in to the operating system rather than having to allocate, copy into, and then deallocate
data buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed. It only
reads or writes the file on disk when a specified part of the memory map is accessed, and
then it only reads that specific part. This provides faster random access to the mapped
data.

Efficiency

Mapping a file into memory allows access to data in the file as if that data had been read
into an array in the application's address space. Initially, MATLAB only allocates

9 Memory-Mapping Data Files

9-2

address space for the array; it does not actually read data from the file until you access
the mapped region. As a result, memory-mapped files provide a mechanism by which
applications can access data segments in an extremely large file without having to read
the entire file into memory first.

Efficient Coding Style

Memory-mapping in your MATLAB application enables you to access file data using
standard MATLAB indexing operations. Once you have mapped a file to memory, you
can read the contents of that file using the same type of MATLAB statements used to
read variables from the MATLAB workspace. The contents of the mapped file appear as
if they were an array in the currently active workspace. You simply index into this array
to read or write the desired data from the file. Therefore, you do not need explicit calls to
the fread and fwrite functions.

In MATLAB, if x is a memory-mapped variable, and y is the data to be written to a file,
then writing to the file is as simple as

x.Data = y;

Sharing Memory Between Applications

Memory-mapped files also provide a mechanism for sharing data between applications,
as shown in the figure below. This is achieved by having each application map sections of
the same file. You can use this feature to transfer large data sets between MATLAB and
other applications.

 Overview of Memory-Mapping

9-3

Also, within a single application, you can map the same segment of a file more than once.

When to Use Memory-Mapping

Just how much advantage you get from mapping a file to memory depends mostly on the
size and format of the file, the way in which data in the file is used, and the computer
platform you are using.

When Memory-Mapping Is Most Useful

Memory-mapping works best with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times
• For small files that you want to read into memory once and access frequently
• For data that you want to share between applications

9 Memory-Mapping Data Files

9-4

• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant

The following types of files do not fully use the benefits of memory-mapping:

• Formatted binary files like HDF or TIFF that require customized readers are not good
for memory-mapping. Describing the data contained in these files can be a very
complex task. Also, you cannot access data directly from the mapped segment, but
must instead create arrays to hold the data.

• Text or ASCII files require that you convert the text in the mapped region to an
appropriate type for the data to be meaningful. This takes up additional address
space.

• Files that are larger than several hundred megabytes in size consume a significant
amount of the virtual address space needed by MATLAB to process your program.
Mapping files of this size may result in MATLAB reporting out-of-memory errors
more often. This is more likely if MATLAB has been running for some time, or if the
memory used by MATLAB becomes fragmented.

Maximum Size of a Memory Map

Due to limits set by the operating system and MATLAB, the maximum amount of data
you can map with a single instance of a memory map is 2 gigabytes on 32-bit systems,
and 256 terabytes on 64-bit systems. If you need to map more than this limit, you can
either create separate maps for different regions of the file, or you can move the window
of one map to different locations in the file.

Byte Ordering

Memory-mapping works only with data that have the same byte ordering scheme as the
native byte ordering of your operating system. For example, because both Linus Torvalds'
Linux and Microsoft Windows systems use little-endian byte ordering, data created on a
Linux system can be read on Windows systems. You can use the computer function to
determine the native byte ordering of your current system.

 Overview of Memory-Mapping

9-5

Map File to Memory
In this section...
“Create a Simple Memory Map” on page 9-6
“Specify Format of Your Mapped Data” on page 9-7
“Map Multiple Data Types and Arrays” on page 9-8
“Select File to Map” on page 9-10

Create a Simple Memory Map

Suppose you want to create a memory map for a file named records.dat, using the
memmapfile function.

Create a sample file named records.dat, containing 5000 values.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Next, create the memory map. Use the Format name-value pair argument to specify that
the values are of type double. Use the Writable name-value pair argument to allow
write access to the mapped region.

m = memmapfile('records.dat', ...
 'Format', 'double', ...
 'Writable', true)

m =

 Filename: 'd:\matlab\records.dat'
 Writable: true
 Offset: 0
 Format: 'double'
 Repeat: Inf
 Data: 5000x1 double array

MATLAB creates a memmapfile object, m. The Format property indicates that read and
write operations to the mapped region treat the data in the file as a sequence of double-

9 Memory-Mapping Data Files

9-6

precision numbers. The Data property contains the 5000 values from the file,
records.dat. You can change the value of any of the properties, except for Data, after
you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the mapped
region 1024 bytes from the start of the file by changing the value of the Offset property.

m.Offset = 1024

m =

 Filename: 'd:\matlab\records.dat'
 Writable: true
 Offset: 1024
 Format: 'double'
 Repeat: Inf
 Data: 4872x1 double array

Whenever you change the value of a memory map property, MATLAB remaps the file to
memory. The Data property now contains only 4872 values.

Specify Format of Your Mapped Data
By default, MATLAB considers all the data in a mapped file to be a sequence of unsigned
8-bit integers. However, your data might be of a different data type. When you call the
memmapfile function, use the Format name-value pair argument to indicate another
data type. The value of Format can either be a character vector that identifies a single
class used throughout the mapped region, or a cell array that specifies more than one
class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file can be
treated as a sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte double-precision
floating-point numbers, to name just a few possibilities. You also could read this data as
a combination of different types: for example, as 4,000 8-bit (1-byte) integers followed by
1,000 64-bit (8-byte) integers. You can determine how MATLAB will interpret the
mapped data by setting the Format property of the memory map when you call the
memmapfile function.

MATLAB arrays are stored on disk in column-major order. The sequence of array
elements is column 1, row 1; column 1, row 2; column 1, last row; column 2, row 1, and so
on. You might need to transpose or rearrange the order of array elements when reading
or writing via a memory map.

 Map File to Memory

9-7

Map Multiple Data Types and Arrays

If the region you are mapping comprises segments of varying data types or array shapes,
you can specify an individual format for each segment. Specify the value of the Format
name-value pair argument as an n-by-3 cell array, where n is the number of segments.
Each row in the cell array corresponds to a segment. The first cell in the row identifies
the data type to apply to the mapped segment. The second cell contains the array
dimensions to apply to the segment. The third cell contains the field name for referencing
that segment. For a memory map, m, use the following syntax:

m = memmapfile(filename, ...
 'Format', { ...
 datatype1, dimensions1, fieldname1; ...
 datatype2, dimensions2, fieldname2; ...
 : : : ...
 datatypeN, dimensionsN, fieldnameN})

Suppose you have a file that is 40,000 bytes in length. The following code maps the data
beginning at the 2048th byte. The Format value is a 3-by-3 cell array that maps the file
data to three different classes: int16, uint32, and single.

m = memmapfile('records.dat', ...
 'Offset', 2048, ...
 'Format', { ...
 'int16' [2 2] 'model'; ...
 'uint32' [1 1] 'serialno'; ...
 'single' [1 3] 'expenses'});

In this case, memmapfile maps the int16 data as a 2-by-2 matrix that you can access
using the field name, model. The uint32 data is a scalar value accessed using the field
name, serialno. The single data is a 1-by-3 matrix named expenses. Each of these
fields belongs to the 800-by-1 structure array, m.Data.

This figure shows the mapping of the example file.

9 Memory-Mapping Data Files

9-8

The next figure shows the ordering of the array elements more closely. In particular, it
illustrates that MATLAB arrays are stored on the disk in column-major order. The
sequence of array elements in the mapped file is row 1, column 1; row 2, column 1; row 1,
column 2; and row 2, column 2.

 Map File to Memory

9-9

If the data in your file is not stored in this order, you might need to transpose or
rearrange the order of array elements when reading or writing via a memory map.

Select File to Map

You can change the value of the Filename property at any time after constructing the
memmapfile object. You might want to do this if:

• You want to use the same memmapfile object on more than one file.
• You save your memmapfile object to a MAT-file, and then later load it back into

MATLAB in an environment where the mapped file has been moved to a different
location. This requires that you modify the path segment of the Filename to
represent the new location.

Update the path in the Filename property for a memory map using dot notation. For
example, to specify a new path, f:\testfiles\records.dat for a memory map, m,
type:

m.Filename = 'f:\testfiles\records.dat'

See Also
memmapfile

More About
• “Read from Mapped File” on page 9-12

9 Memory-Mapping Data Files

9-10

• “Write to Mapped File” on page 9-18

 See Also

9-11

Read from Mapped File
This example shows how to create two different memory maps, and then read from each
of the maps using the appropriate syntax. Then, it shows how to modify map properties
and analyze your data.

You can read the contents of a file that you mapped to memory using the same
MATLAB® commands you use to read variables from the MATLAB workspace. By
accessing the Data property of the memory map, the contents of the mapped file appear
as an array in the currently active workspace. To read the data you want from the file,
simply index into the array. For better performance, copy the Data field to a variable,
and then read the mapped file using this variable:

dataRef = m.Data;

for k = 1 : N

y(k) = dataRef(k);

end

By contrast, reading directly from the memmapfile object is slower:

for k = 1 : N

y(k) = m.Data(k);

end

Read from Memory Map as Numeric Array

First, create a sample data file named records.dat that contains a 5000-by-1 matrix of
double-precision floating-point numbers.

randData = gallery('uniformdata',[5000,1],0);

fileID = fopen('records.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Map 100 double-precision floating-point numbers from the file to memory, and then read
a portion of the mapped data. Create the memory map, m. Specify an Offset value of

9 Memory-Mapping Data Files

9-12

1024 to begin the map 1024 bytes from the start of the file. Specify a Repeat value of 100
to map 100 values.

m = memmapfile('records.dat','Format','double', ...
 'Offset',1024,'Repeat',100);

Copy the Data property to a variable, d. Then, show the format of d.

d = m.Data;

whos d

 Name Size Bytes Class Attributes

 d 100x1 800 double

The mapped data is an 800-byte array because there are 100 double values, each
requiring 8 bytes.

Read a selected set of numbers from the file by indexing into the vector, d.

d(15:20)

ans =

 0.8392
 0.6288
 0.1338
 0.2071
 0.6072
 0.6299

Read from Memory Map as Nonscalar Structure

Map portions of data in the file, records.dat, as a sequence of multiple data types.

Call the memmapfile function to create a memory map, m.

 m = memmapfile('records.dat', ...
 'Format', { ...
 'uint16' [5 8] 'x'; ...
 'double' [4 5] 'y' });

 Read from Mapped File

9-13

The Format parameter tells memmapfile to treat the first 80 bytes of the file as a 5-by-8
matrix of uint16 values, and the 160 bytes after that as a 4-by-5 matrix of double
values. This pattern repeats until the end of the file is reached.

Copy the Data property to a variable, d.

d = m.Data

d = 166x1 struct array with fields:
 x
 y

d is a 166-element structure array with two fields. d is a nonscalar structure array
because the file is mapped as a repeating sequence of multiple data types.

Examine one structure in the array to show the format of each field.

d(3)

ans = struct with fields:
 x: [5x8 uint16]
 y: [4x5 double]

Read the x field of that structure from the file.

d(3).x

ans = 5x8 uint16 matrix

 19972 47529 19145 16356 46507 47978 35550 16341
 60686 51944 16362 58647 35418 58072 16338 62509
 51075 16364 54226 34395 8341 16341 33787 57669
 16351 35598 6686 11480 16357 28709 36239 5932
 44292 15577 41755 16362 30311 31712 54813 16353

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as specified by
the Format property.

Read the y field of that structure from the file.

d(3).y

9 Memory-Mapping Data Files

9-14

ans =

 0.7271 0.3704 0.6946 0.5226 0.2714
 0.3093 0.7027 0.6213 0.8801 0.2523
 0.8385 0.5466 0.7948 0.1730 0.8757
 0.5681 0.4449 0.9568 0.9797 0.7373

MATLAB formats the block of data as a 4-by-5 matrix of double values.

Modify Map Properties and Analyze Data

This part of the example shows how to plot the Fourier transform of data read from a file
via a memory map. It then modifies several properties of the existing map, reads from a
different part of the data file, and plots a histogram from that data.

Create a sample file named double.dat.

randData = gallery('uniformdata',[5000,1],0);
fileID = fopen('double.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

Create a memmapfile object of 1,000 elements of type double, starting at the 1025th
byte.

m = memmapfile('double.dat','Offset',1024, ...
 'Format','double','Repeat',1000);

Copy the Data property to a variable, k. Then, get data associated with the map and plot
the FFT of the first 100 values of the map.

k = m.Data;
plot(abs(fft(k(1:100))))

 Read from Mapped File

9-15

This is the first time that data is referenced and is when the actual mapping of the file to
the MATLAB address space takes place.

Change the map properties, but continue using the same file. Whenever you change the
value of a memory map property, MATLAB remaps the file to memory.

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

m is now a memmapfile object of 800 elements of type single. The map now begins at
the 4096th byte in the file, records.dat.

9 Memory-Mapping Data Files

9-16

Read from the portion of the file that begins at the 4096th byte, and calculate the
maximum value of the data. This command maps a new region and unmaps the previous
region.

X = max(m.Data)

X = single
 7.5449e+37

See Also
memmapfile

More About
• “Map File to Memory” on page 9-6
• “Write to Mapped File” on page 9-18

 See Also

9-17

Write to Mapped File
This example shows how to create three different memory maps, and then write to each
of the maps using the appropriate syntax. Then, it shows how to work with copies of your
mapped data.

You can write to a file using the same MATLAB commands you use to access variables in
the MATLAB workspace. By accessing the Data property of the memory map, the
contents of the mapped file appear as an array in the currently active workspace. Simply
index into this array to write data to the file. The syntax to use when writing to mapped
memory depends on the format of the Data property of the memory map.

In this section...
“Write to Memory Mapped as Numeric Array” on page 9-18
“Write to Memory Mapped as Scalar Structure” on page 9-19
“Write to Memory Mapped as Nonscalar Structure” on page 9-20
“Syntaxes for Writing to Mapped File” on page 9-21
“Work with Copies of Your Mapped Data” on page 9-22

Write to Memory Mapped as Numeric Array

First, create a sample file named records.dat, in your current folder.

myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

Map the file as a sequence of 16-bit-unsigned integers. Use the Format name-value pair
argument to specify that the values are of type uint16.

m = memmapfile('records.dat', ...
 'Offset',20, ...
 'Format','uint16', ...
 'Repeat',15);

Because the file is mapped as a sequence of a single class (uint16), Data is a numeric
array.

9 Memory-Mapping Data Files

9-18

Ensure that you have write permission to the mapped file. Set the Writable property of
the memory map, m, to true.

m.Writable = true;

Create a matrix X that is the same size as the Data property, and write it to the mapped
part of the file. All of the usual MATLAB indexing and class rules apply when assigning
values to data via a memory map. The class that you assign to must be big enough to
hold the value being assigned.

X = uint16(1:1:15);
m.Data = X;

X is a 1-by-15 vector of integer values ranging from 1 to 15.

Verify that new values were written to the file. Specify an Offset value of 0 to begin
reading from the beginning of the file. Specify a Repeat value of 35 to view a total of 35
values. Use the reshape function to display the values as a 7-by-5 matrix.

m.Offset = 0;
m.Repeat = 35;
reshape(m.Data,5,7)'

ans = 7x5 uint16 matrix

 47662 34773 26485 16366 58664
 25170 38386 16333 14934 9028
 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 10085 14020 16349 37120 31342
 62110 16274 9357 44395 18679

The values in X have been written to the file, records.dat .

Write to Memory Mapped as Scalar Structure

Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16 that can be
referenced by the field name, x, followed by a 200-by-5 matrix of type double that can be
reference by the field name, y. Specify write permission to the mapped file using the
Writable name-value pair argument.

 Write to Mapped File

9-19

m = memmapfile('records.dat', ...
 'Format', { ...
 'uint16' [300 8] 'x'; ...
 'double' [200 5] 'y' }, ...
 'Repeat', 1, 'Writable', true);

View the Data property

m.Data

ans = struct with fields:
 x: [300x8 uint16]
 y: [200x5 double]

Data is a scalar structure array. This is because the file, records.dat, is mapped as
containing multiple data types that do not repeat.

Replace the matrix in the field, x, with a matrix of all ones.

 m.Data.x = ones(300,8,'uint16');

Write to Memory Mapped as Nonscalar Structure

Map the file, records.dat, as a 25-by-8 matrix of of type uint16 followed by a 15-by-5
matrix of type double. Repeat the pattern 20 times.

 m = memmapfile('records.dat', ...
 'Format', { ...
 'uint16' [5 4] 'x'; ...
 'double' [15 5] 'y' }, ...
 'Repeat', 20, 'Writable', true);

View the Data property

m.Data

ans = 20x1 struct array with fields:
 x
 y

Data is a nonscalar structure array, because the file is mapped as a repeating sequence
of multiple data types.

9 Memory-Mapping Data Files

9-20

Write an array of all ones to the field named x in the 12th element of Data.

 m.Data(12).x = ones(5,4,'uint16');

For the 12th element of Data, write the value, 50, to all elements in rows 3 to 5 of the
field, x.

 m.Data(12).x(3:5,1:end) = 50;

View the field, x, of the 12th element of Data.

 m.Data(12).x

ans = 5x4 uint16 matrix

 1 1 1 1
 1 1 1 1
 50 50 50 50
 50 50 50 50
 50 50 50 50

Syntaxes for Writing to Mapped File

The syntax to use when writing to mapped memory depends on the format of the Data
property of the memory map. View the properties of the memory map by typing the name
of the memmapfile object.

This table shows the syntaxes for writing a matrix, X, to a memory map, m.
Format of the Data Property Syntax for Writing to Mapped File
Numeric array

Example: 15x1 uint16
array

m.Data = X;

Scalar (1-by-1) structure array

Example:

1x1 struct array with fields:
 x
 y

m.Data.fieldname = X;

fieldname is the name of a field.

 Write to Mapped File

9-21

Format of the Data Property Syntax for Writing to Mapped File
Nonscalar (n-by-1) structure
array

Example:

20x1 struct array with fields:
 x
 y

m.Data(k).fieldname = X;

k is a scalar index and fieldname is the name of a
field.

The class of X and the number of elements in X must match those of the Data property or
the field of the Data property being accessed. You cannot change the dimensions of the
Data property after you have created the memory map using the memmapfile function.
For example, you cannot diminish or expand the size of an array by removing or adding a
row from the mapped array, m.Data.

If you map an entire file and then append to that file after constructing the map, the
appended data is not included in the mapped region. If you need to modify the
dimensions of data that you have mapped to a memory map, m, you must either modify
the Format or Repeat properties for m, or recreate m using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission for that file.
If you do not have write permission, attempting to write to the file generates an error,
even if the Writable property is true.

Work with Copies of Your Mapped Data

This part of the example shows how to work with copies of your mapped data. The data
in variable d is a copy of the file data mapped by m.Data(2). Because it is a copy,
modifying array data in d does not modify the data contained in the file.

Create a sample file named double.dat.

myData = gallery('uniformdata',[5000,1],0) * 100;
fileID = fopen('double.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

Map the file as a series of double matrices.

9 Memory-Mapping Data Files

9-22

m = memmapfile('double.dat', ...
 'Format', { ...
 'double' [5 5] 'x'; ...
 'double' [4 5] 'y' });

View the values in m.Data(2).x.

m.Data(2).x

ans =

 50.2813 19.3431 69.7898 49.6552 66.0228
 70.9471 68.2223 37.8373 89.9769 34.1971
 42.8892 30.2764 86.0012 82.1629 28.9726
 30.4617 54.1674 85.3655 64.4910 34.1194
 18.9654 15.0873 59.3563 81.7974 53.4079

Copy the contents of m.Data to the variable, d.

d = m.Data;

Write all zeros to the field named x in the copy.

d(2).x(1:5,1:5) = 0;

Verify that zeros are written to d(2).x
d(2).x

ans =

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

Verify that the data in the mapped file is not changed.

m.Data(2).x

ans =

 50.2813 19.3431 69.7898 49.6552 66.0228

 Write to Mapped File

9-23

 70.9471 68.2223 37.8373 89.9769 34.1971
 42.8892 30.2764 86.0012 82.1629 28.9726
 30.4617 54.1674 85.3655 64.4910 34.1194
 18.9654 15.0873 59.3563 81.7974 53.4079

See Also
memmapfile

More About
• “Map File to Memory” on page 9-6
• “Read from Mapped File” on page 9-12

9 Memory-Mapping Data Files

9-24

Delete Memory Map
In this section...
“Ways to Delete a Memory Map” on page 9-25
“The Effect of Shared Data Copies On Performance” on page 9-25

Ways to Delete a Memory Map

To clear a memmapfile object from memory, do any of the following:

• Reassign another value to the memmapfile object's variable
• Clear the memmapfile object's variable from memory
• Exit the function scope in which the memmapfile object was created

The Effect of Shared Data Copies On Performance

When you assign the Data field of the memmapfile object to a variable, MATLAB makes
a shared data copy of the mapped data. This is very efficient because no memory actually
gets copied. In the following statement, d is a shared data copy of the data mapped from
the file:

d = m.Data;

When you finish using the mapped data, make sure to clear any variables that share
data with the mapped file before clearing the memmapfile object itself. If you clear the
object first, then the sharing of data between the file and dependent variables is broken,
and the data assigned to such variables must be copied into memory before the object is
cleared. If access to the mapped file was over a network, then copying this data to local
memory can take considerable time. Therefore, if you assign m.Data to the variable, d,
you should be sure to clear d before clearing m when you are finished with the memory
map.

 Delete Memory Map

9-25

Share Memory Between Applications
This example shows how to implement two separate MATLAB processes that
communicate with each other by writing and reading from a shared file. They share the
file by mapping part of their memory space to a common location in the file. A write
operation to the memory map belonging to the first process can be read from the map
belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its memory
map. It also writes the length of the message to byte 1 in the file, which serves as a
means of notifying the other process that a message is available. The second process
(running answer.m) monitors byte 1 and, upon seeing it set, displays the received
message, puts it into uppercase, and echoes the message back to the sender.

Prior to running the example, copy the send and answer functions to files send.m and
answer.m in your current working directory.

The send Function

This function prompts you to enter text and then, using memory-mapping, passes the
text to another instance of MATLAB that is running the answer function.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
 [f, msg] = fopen(filename, 'wb');
 if f ~= -1
 fwrite(f, zeros(1,256), 'uint8');
 fclose(f);
 else
 error('MATLAB:demo:send:cannotOpenFile', ...
 'Cannot open file "%s": %s.', filename, msg);
 end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true

9 Memory-Mapping Data Files

9-26

 % Set first byte to zero, indicating a message is not
 % yet ready.
 m.Data(1) = 0;

 str = input('Enter text (or RETURN to end): ', 's');

 len = length(str);
 if (len == 0)
 disp('Terminating SEND function.')
 break;
 end

 % Warn if the message is longer than 255 characters.
 if len > 255
 warning('ml:ml','SEND input will be truncated to 255 characters.');
 end
 str = str(1:min(len,255)); % Limit message to 255 characters.
 len = length(str); % Update len if str has been truncated.

 % Update the file via the memory map.
 m.Data(2:len+1) = str;
 m.Data(1)=len;

 % Wait until the first byte is set back to zero,
 % indicating that a response is available.
 while (m.Data(1) ~= 0)
 pause(.25);
 end

 % Display the response.
 disp('response from ANSWER is:')
 disp(char(m.Data(2:len+1))')

end

The answer Function

The answer function starts a server that, using memory-mapping, watches for a message
from send. When the message is received, answer replaces the message with an
uppercase version of it, and sends this new message back to send. To use answer, call it
with no inputs.

 Share Memory Between Applications

9-27

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
 [f, msg] = fopen(filename, 'wb');
 if f ~= -1
 fwrite(f, zeros(1,256), 'uint8');
 fclose(f);
 else
 error('MATLAB:demo:answer:cannotOpenFile', ...
 'Cannot open file "%s": %s.', filename, msg);
 end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
 % Wait until the first byte is not zero.
 while m.Data(1) == 0
 pause(.25);
 end

 % The first byte now contains the length of the message.
 % Get it from m.
 msg = char(m.Data(2:1+double(m.Data(1))))';

 % Display the message.
 disp('Received message from SEND:')
 disp(msg)

 % Transform the message to all uppercase.
 m.Data(2:1+double(m.Data(1))) = upper(msg);

 % Signal to SEND that the response is ready.
 m.Data(1) = 0;
end

9 Memory-Mapping Data Files

9-28

Running the Example

To see what the example looks like when it is run, first, start two separate MATLAB
sessions on the same computer system. Call the send function with no inputs in one
MATLAB session. Call the answer function in the other session, to create a map in each
of the processes' memory to the common file.

Run send in the first MATLAB session.

send

Enter text (or RETURN to end):

Run answer in the second MATLAB session.

answer

ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB writes
the message to the shared file. The second MATLAB session, running the answer
function, loops on byte 1 of the shared file and, when the byte is written by send, answer
reads the message from the file via its memory map. The answer function then puts the
message into uppercase and writes it back to the file, and send (waiting for a reply)
reads the message and displays it.

send writes a message and reads the uppercase reply.

Hello. Is there anybody out there?

response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter text (or RETURN to end):

answer reads the message from send.

Received message from SEND:
Hello. Is there anybody out there?

Enter a second message at the prompt display by the send function. send writes the
second message to the file.

I received your reply.

 Share Memory Between Applications

9-29

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter text (or RETURN to end):

answer reads the second message, put it into uppercase, and then writes the message to
the file.

Received message from SEND:
I received your reply.

In the first instance of MATLAB, press Enter to exit the example.

Terminating SEND function.

9 Memory-Mapping Data Files

9-30

Internet File Access

MATLAB software provides functions for exchanging files over the Internet. You can
exchange files using common protocols, such as File Transfer Protocol (FTP), Simple Mail
Transport Protocol (SMTP), and HyperText Transfer Protocol (HTTP). In addition, you
can create zip archives to minimize the transmitted file size, and also save and work with
Web pages.

• “Proxy Server Support” on page 10-2
• “MATLAB and Web Services Security” on page 10-3
• “Download Data from Web Service” on page 10-4
• “Convert Data from Web Service” on page 10-7
• “Download Web Page and Files” on page 10-10
• “Call Web Services from Functions” on page 10-12
• “Send Email” on page 10-14
• “Perform FTP File Operations” on page 10-16
• “Display Hyperlinks in the Command Window” on page 10-18

10

Proxy Server Support
The webread, webwrite, and websave functions support only nonauthenticated and
basic authentication types for use with your proxy server.

To specify proxy server settings using MATLAB preferences, see “Specify Proxy Server
Settings for Connecting to the Internet”.

On Windows, if no proxy is specified in MATLAB preferences, webread, webwrite, and
websave use the proxy set in the Windows system preferences. To specify system proxy
server settings, refer to your Windows documentation for locating Internet Options. On
the Connections tab, select LAN settings. The proxy settings are in the Proxy server
section. MATLAB does not take into account proxy exceptions which you configure in
Windows.

Even if you have specified the correct credentials in the MATLAB preference panel or in
the Windows system proxy settings, the webread, webwrite, and websave functions
return the error Proxy Authentication Required if:

• The proxy server in MATLAB preferences requires an authentication method other
than Basic.

• The proxy server in Windows system preferences requires authentication of any type.

See Also
webread | websave | webwrite

10 Internet File Access

10-2

MATLAB and Web Services Security
This topic describes how MATLAB handles security for web services. For a complete
description of computer security, you need to consult external resources.

MATLAB Does Not Verify Certificate Chains

For HTTPS connections, the webread, webwrite, and websave functions verify that the
certificate domain matches the host name of the web service. These functions do not
verify the certificate chain. For a complete description of computer security, you need to
consult external resources.

See Also
webread | websave | webwrite

 MATLAB and Web Services Security

10-3

Download Data from Web Service
This example shows how to download data from a web service with the webread
function. The World Bank provides various climate data via the World Bank Climate
Data API. A call to this API returns data in JSON format. webread converts JSON
objects to structures that are convenient for analysis in MATLAB.

Use webread to read USA average annual temperatures into a structure array.

api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
url = [api 'country/cru/tas/year/USA'];
S = webread(url)

S =

112x1 struct array with fields:

 year
 data

webread converted the data to a structure array with 112 elements. Each structure
contains the temperature for a given year, from 1901 to 2012.

S(1)

ans =

 year: 1901
 data: 6.6187

S(112)

ans =

 year: 2012
 data: 7.9395

Plot the average temperature per year. Convert the temperatures and years to numeric
arrays. Convert the years to a datetime object for ease of plotting, and convert the
temperatures to degrees Fahrenheit.

temps = [S.data];
temps = 9/5 * temps + 32;
years = [S.year];

10 Internet File Access

10-4

yearstoplot = datetime(years,1,1);
figure
plot(yearstoplot, temps);
title('USA Average Temperature 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
xmin = datetime(1899,1,1);
xmax = datetime(2014,1,1);
xlim([xmin xmax])

Overplot a least-squares fit of a line to the temperatures.

p = polyfit(years,temps,1);
ptemps = polyval(p,years);

 Download Data from Web Service

10-5

deltat = p(1);
hold on
fl = plot(yearstoplot, ptemps);
xlim([xmin xmax])
title('USA Average Temperature Trend 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
deltat = num2str(10.0*deltat);
legend(fl,['Least Squares Fit, ', deltat, '^{\circ}F/decade'])
hold off

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate
Data API for more information about the API, and World Bank: Terms of Use.)

10 Internet File Access

10-6

http://data.worldbank.org/developers/climate-data-api
http://data.worldbank.org/developers/climate-data-api
http://data.worldbank.org/summary-terms-of-use

Convert Data from Web Service
This example shows how to download data from a web service and use a function as a
content reader with webread.

The National Geophysical Data Center (NGDC) provides various geophysical and space
weather data via a web service. Among other data sets, the NGDC aggregates sunspot
numbers published by the American Association of Variable Star Observers (AAVSO).
Use webread to download sunspot numbers for every year since 1945.

api = 'http://www.ngdc.noaa.gov/stp/space-weather/';
url = [api 'solar-data/solar-indices/sunspot-numbers/' ...
 'american/lists/list_aavso-arssn_yearly.txt'];
spots = webread(url);
whos('spots')

 Name Size Bytes Class Attributes

 spots 1x1269 2538 char

The NGDC web service returns the sunspot data as text. By default, webread returns
the data as a character array.

spots(1:100)

ans =

 American
 Year SSN
 1945 32.3
 1946 99.9
 1947 170.9
 1948 166.6

webread can use a function to return the data as a different type. You can use
readtable with webread to return the sunspot data as a table.

Create a weboptions object that specifies a function for readtable.

myreadtable = @(filename)readtable(filename,'HeaderLines',1, ...
 'Format','%f%f','Delimiter','space','MultipleDelimsAsOne',1);
options = weboptions('ContentReader',myreadtable);

 Convert Data from Web Service

10-7

For this data, call readtable with several Name,Value input arguments to convert the
data. For example, Format indicates that each row has two numbers. Spaces are
delimiters, and multiple consecutive spaces are treated as a single delimiter. To call
readtable with these input arguments, wrap readtable and the arguments in a new
function, myreadtable. Create a weboptions object with myreadtable as the content
reader.

Download sunspot data and return the data as a table.
spots = webread(url,options);
whos('spots')

 Name Size Bytes Class Attributes

 spots 76x2 2932 table

Display the sunspot data by column and row.
spots(1:4,{'Year','SSN'})

ans =

 Year SSN
 ____ _____

 1945 32.3
 1946 99.9
 1947 170.9
 1948 166.6

Plot sunspot numbers by year. Use table functions to select sunspot numbers up to the
year 2013. Convert the Year and SSN columns to arrays and plot them.

rows = spots.Year < 2014;
vars = {'Year','SSN'};
spots = spots(rows,vars);
year = spots.Year;
numspots = spots.SSN;
figure
plot(year,numspots);
title('Sunspot Data');
xlabel('Year');
ylabel('Number of Sunspots');
xlim([1940 2015])
ylim([0 180])

10 Internet File Access

10-8

Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the
AAVSO, originally published in AAVSO Sunspot Counts: 1943-2013, AAVSO Solar
Section (R. Howe, Chair).

• See NGDC Privacy Policy, Disclaimer, and Copyright for NGDC terms of service.
• See AAVSO Solar Section for more information on AAVSO solar data, including terms

of use.

 Convert Data from Web Service

10-9

http://www.ngdc.noaa.gov/ngdcinfo/privacy.html
http://aavso.org/solar

Download Web Page and Files
MATLAB provides two functions for reading content from RESTful web services:
webread and websave. With the webread function, you can read the contents of a web
page to a character array in the MATLAB workspace. With the websave function, you
can save web page content to a file.

Because it can create a character array in the workspace, the webread function is useful
for working with the contents of web pages in MATLAB. The websave function is useful
for saving web pages to a local folder.

Note When webread returns HTML as a character array, remember that only the
HTML in that specific web page is retrieved. The hyperlink targets, images, and so on,
are not retrieved.

If you need to pass parameters to a web page, the webread and websave functions let
you define the parameters as Name, Value pair arguments. For more information, see
the webread and websave reference pages.

Example — Use the webread Function

The following procedure demonstrates how to retrieve the contents of the web page
listing the files submitted to the MATLAB Central™ File Exchange, http://
www.mathworks.com/matlabcentral/fileexchange/. It assigns the results to a
character array, fullList:

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
fullList = webread(filex);

Retrieve a list of only those files uploaded to the File Exchange within the past seven
days that contain the word Simulink®. Set duration and term as parameters that
webread passes to the web page.

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
recent = webread(filex,'duration',7,'term','simulink');

10 Internet File Access

10-10

http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/matlabcentral/fileexchange/

Example — Use the websave Function

The following example builds on the procedure in the previous section, but saves the
content to a file:

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';

% Save the Web content to a file.
recent = websave('contains_simulink.html',filex, ...
 'duration',7,'term','simulink');

MATLAB saves the web page as contains_simulink.html. The output argument
recent contains the full path to contains_simulink.html. Call the web function to
display contains_simulink.html in a browser.

web(recent)

This page has links to files uploaded to the MATLAB Central File Exchange.

 Download Web Page and Files

10-11

Call Web Services from Functions
You can call webread from functions you define. Best practice is to allow your function to
pass HTTP request options to webread.

This code sample shows how to download climate data for a country. The sample defines
a function in a file named worldBankTemps.m that downloads annual temperatures
from the World Bank and converts them to degrees Fahrenheit. You can pass additional
HTTP request parameters with the options input argument. options is a weboptions
object that worldBankTemps passes to webread. You can call worldBankTemps with a
country name only when you do not need to define any other HTTP request parameters.
function temperatures = worldBankTemps(country,options)
% Get World Bank temperatures for a country, for example, 'USA'.
api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
api = [api 'country/cru/tas/year/'];
country = [api country];

% The options object contains additional HTTP
% request parameters. If worldBankTemps was
% not passed options as an input argument,
% create a default weboptions object.
if ~exist('options','var')
 options = weboptions;
end
s = webread(country,options);

% Convert data to arrays
temperatures = struct('Years',[],'DegreesInFahrenheit',[]);
temperatures(1).Years = [s.year];
temperatures(1).DegreesInFahrenheit = [s.data];

% Convert temperatures to Fahrenheit
temperatures(1).DegreesInFahrenheit = temperatures(1).DegreesInFahrenheit * 9/5 + 32;
end

To get temperature data for the USA, call worldBankTemps. If the connection to the
World Bank web service times out, the service returns an error message.
S = worldBankTemps('USA')
Error using webread (line 112)
The connection to URL 'http://climatedataapi.worldbank.org/climateweb/rest/v1/country/cru/tas/year/USA'
timed out after 5.0 seconds. Set options.Timeout to a higher value.

10 Internet File Access

10-12

If you create options and set its Timeout property to 60 seconds, then you can call
worldBankTemps again with options as an input argument. worldBankTemps passes
options to webread as an input argument. This time webread keeps the connection
open for a maximum of 60 seconds.

options = weboptions('Timeout',60);
S = worldBankTemps('USA',options)

S =

 Years: [1x112 double]
 DegreesInFahrenheit: [1x112 double]

If your code does not allow you to pass request options to webread, that limits your
ability to respond to error messages returned by web services.

Error Messages Concerning Web Service Options

When you use a web service function in MATLAB the function might return an error
message that advises you to set a property of options, such as options.Timeout. This
table shows some typical error messages that refer to options properties and actions
you can take in response.
Error Message Contains Phrase Action To Be Taken
Set options.Timeout to a higher
value.

options = weboptions('Timeout',
60)
data = webread(url,options)

Set options.ContentType to
'json'.

options =
weboptions('ContentType','json')
data = webread(url,options)

. . . the provided authentication
parameters, options.Username and
options.Password, are incorrect.

options =
weboptions('Username','your
username','Password','your
password')
data = webread(url,options)

 Call Web Services from Functions

10-13

Send Email
To send an email from MATLAB, use the sendmail function. You can also attach files to
an email, which lets you mail files directly from MATLAB. To use sendmail, set up your
email address and your SMTP server information with the setpref function.

The setpref function defines two mail-related preferences:

• Email address: This preference sets your email address that will appear on the
message.

setpref('Internet','E_mail','youraddress@yourserver.com');
• SMTP server: This preference sets your outgoing SMTP server address, which can be

almost any email server that supports the Post Office Protocol (POP) or the Internet
Message Access Protocol (IMAP).

setpref('Internet','SMTP_Server','mail.server.network');

Find your outgoing SMTP server address in your email account settings in your email
client application. You can also contact your system administrator for the information.

Once you have properly configured MATLAB, you can use the sendmail function. The
sendmail function requires at least two arguments: the recipient's email address and
the email subject.

sendmail('recipient@someserver.com','Hello From MATLAB!');

You can supply multiple email addresses using a cell array of character vectors.

sendmail({'recipient@someserver.com','recipient2@someserver.com'}, ...
 'Hello From MATLAB!');

You can specify a message body.

sendmail('recipient@someserver.com','Hello From MATLAB!', ...
 'Thanks for using sendmail.');

You can attach files to an email.

sendmail('recipient@someserver.com','Hello from MATLAB!', ...
 'Thanks for using sendmail.','C:\yourFileSystem\message.txt');

10 Internet File Access

10-14

You cannot attach a file without including a message. However, the message can be
empty.

You can attach multiple files to an email.

sendmail('recipient@someserver.com','Hello from MATLAB!', ...
 'Thanks for using sendmail.',{'C:\yourFileSystem\message.txt', ...
 'C:\yourFileSystem\message2.txt'});

See Also
sendmail | setpref

 See Also

10-15

Perform FTP File Operations
From MATLAB, you can connect to an FTP server to perform remote file operations. The
following procedure uses a public FTP server at the National Geophysical Data Center
(NGDC). To perform any file operation on an FTP server, follow these steps:

1 Connect to the server using the ftp function.
2 Perform file operations using appropriate MATLAB FTP functions. For all

operations, specify the server object.
3 When you finish working on the server, close the connection object using the close

function.

Example — Retrieve a File from an FTP Server

List the contents of the anonymous FTP service at the NGDC.

ngdc = ftp('ftp.ngdc.noaa.gov');
dir(ngdc)

DMSP Solid_Earth international wdc
INDEX.txt ftp.html ionosonde
README.txt geomag mgg
STP hazards pub
Snow_Ice index.html tmp

Retrieve a file named INDEX.txt. To view the file, use the type function.

mget(ngdc,'INDEX.txt');
type INDEX.txt

 National Geophysical Data Center (NGDC)

 INDEX of anonymous ftp area
 ftp.ngdc.noaa.gov

DIRECTORY/FILE DESCRIPTION OF CONTENTS
-------------- ---
pub/ Public access area
DMSP/ Defense Meteorological Satellite Data Archive
geomag/ Geomagnetism and geomagnetics models

10 Internet File Access

10-16

hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes
international/ International program information on IAGA/Oersted/wdc
ionosonde/ Ionosonde data
mgg/ Limited Marine Geology and Geophysics (most data in http area)
OD/ Office of the Director, NGDC
Snow_Ice/ Snow and Ice Data Center
Solid_Earth/ Historic Solid Earth Geophysics
STP/ Solar-Terrestrial Physics
tmp/ Pickup area for temporary outgoing data
wdc/ World Data Service for Geophysics, formerly World Data Centers
-------------- ---
Please see file README.txt in this directory for more information and how to
contact NGDC. Direct E-mail inquiries to ngdc.info@noaa.gov

Also see our web site: http://www.ngdc.noaa.gov/ngdc.html

NGDC is part of the:
U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data and Information Service (NESDIS)

View the contents of the pub folder:

cd(ngdc,'pub')
dir(ngdc)

Close the FTP connection.

close(ngdc)

FTP service courtesy of the NGDC. See NGDC Privacy Policy, Disclaimer, and Copyright
for NGDC terms of service.

See Also
FTP

 See Also

10-17

http://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Display Hyperlinks in the Command Window
In this section...
“Create Hyperlinks to Web Pages” on page 10-18
“Transfer Files Using FTP” on page 10-18

Create Hyperlinks to Web Pages

When you create a hyperlink to a Web page, append a full hypertext address on a single
line as input to the disp or fprintf command. For example, the following command:

disp('The MathWorks Web Site')

displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays the
requested page.

Transfer Files Using FTP

To create a link to an FTP site, enter the site address as input to the disp command as
follows:

disp('The MathWorks FTP Site')

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested FTP site.

10 Internet File Access

10-18

http://www.mathworks.com
ftp://ftp.mathworks.com

Large Data

• “Getting Started with MapReduce” on page 11-3
• “Write a Map Function” on page 11-11
• “Write a Reduce Function” on page 11-16
• “Speed Up and Deploy MapReduce Using Other Products” on page 11-22
• “Build Effective Algorithms with MapReduce” on page 11-24
• “Debug MapReduce Algorithms” on page 11-27
• “Find Maximum Value with MapReduce” on page 11-34
• “Compute Mean Value with MapReduce” on page 11-38
• “Compute Mean by Group Using MapReduce” on page 11-42
• “Create Histograms Using MapReduce” on page 11-47
• “Simple Data Subsetting Using MapReduce” on page 11-56
• “Using MapReduce to Compute Covariance and Related Quantities” on page 11-65
• “Compute Summary Statistics by Group Using MapReduce” on page 11-71
• “Using MapReduce to Fit a Logistic Regression Model” on page 11-79
• “Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 11-86
• “Compute Maximum Average HSV of Images with MapReduce” on page 11-92
• “Getting Started with Datastore” on page 11-99
• “Read Remote Data” on page 11-104
• “Read and Analyze Large Tabular Text File” on page 11-109
• “Read and Analyze Image Files” on page 11-112
• “Read and Analyze MAT-File with Key-Value Data” on page 11-117
• “Read and Analyze Hadoop Sequence File” on page 11-121
• “Develop Custom Datastore” on page 11-123
• “Testing Guidelines for Custom Datastores” on page 11-130
• “Tall Arrays” on page 11-141
• “Functions That Support Tall Arrays (A–Z)” on page 11-149

11

• “Deferred Evaluation of Tall Arrays” on page 11-170
• “Index and View Tall Array Elements” on page 11-176
• “Histograms of Tall Arrays” on page 11-186
• “Visualization of Tall Arrays” on page 11-193
• “Grouped Statistics Calculations with Tall Arrays” on page 11-202
• “Extend Tall Arrays with Other Products” on page 11-207

11 Large Data

11-2

Getting Started with MapReduce
As the number and type of data acquisition devices grows annually, the sheer size and
rate of data being collected is rapidly expanding. These big data sets can contain
gigabytes or terabytes of data, and can grow on the order of megabytes or gigabytes per
day. While the collection of this information presents opportunities for insight, it also
presents many challenges. Most algorithms are not designed to process big data sets in a
reasonable amount of time or with a reasonable amount of memory. MapReduce allows
you to meet many of these challenges to gain important insights from large data sets.

In this section...
“What Is MapReduce?” on page 11-3
“MapReduce Algorithm Phases” on page 11-4
“Example MapReduce Calculation” on page 11-5

What Is MapReduce?

MapReduce is a programming technique for analyzing data sets that do not fit in
memory. You may be familiar with Hadoop® MapReduce, which is a popular
implementation that works with the Hadoop Distributed File System (HDFS™).
MATLAB provides a slightly different implementation of the MapReduce technique with
the mapreduce function.

mapreduce uses a datastore to process data in small chunks that individually fit into
memory. Each chunk goes through a Map phase, which formats the data to be processed.
Then the intermediate data chunks go through a Reduce phase, which aggregates the
intermediate results to produce a final result. The Map and Reduce phases are encoded
by map and reduce functions, which are primary inputs to mapreduce. There are endless
combinations of map and reduce functions to process data, so this technique is both
flexible and extremely powerful for tackling large data processing tasks.

mapreduce lends itself to being extended to run in several environments. For more
information about these capabilities, see “Speed Up and Deploy MapReduce Using Other
Products” on page 11-22.

The utility of the mapreduce function lies in its ability to perform calculations on large
collections of data. Thus, mapreduce is not well-suited for performing calculations on
normal sized data sets which can be loaded directly into computer memory and analyzed

 Getting Started with MapReduce

11-3

with traditional techniques. Instead, use mapreduce to perform a statistical or
analytical calculation on a data set that does not fit in memory.

Each call to the map or reduce function by mapreduce is independent of all others. For
example, a call to the map function cannot depend on inputs or results from a previous
call to the map function. It is best to break up such calculations into multiple calls to
mapreduce.

MapReduce Algorithm Phases

mapreduce moves each chunk of data in the input datastore through several phases
before reaching the final output. The following figure outlines the phases of the
algorithm for mapreduce.

The algorithm has the following steps:

1 mapreduce reads a chunk of data from the input datastore using [data,info] =
read(ds), and then calls the map function to work on that chunk.

2 The map function receives the chunk of data, organizes it or performs a precursory
calculation, and then uses the add and addmulti functions to add key-value pairs to
an intermediate data storage object called a KeyValueStore. The number of calls to
the map function by mapreduce is equal to the number of chunks in the input
datastore.

11 Large Data

11-4

3 After the map function works on all of the chunks of data in the datastore,
mapreduce groups all of the values in the intermediate KeyValueStore object by
unique key.

4 Next, mapreduce calls the reduce function once for each unique key added by the
map function. Each unique key can have many associated values. mapreduce passes
the values to the reduce function as a ValueIterator object, which is an object
used to iterate over the values. The ValueIterator object for each unique key
contains all the associated values for that key.

5 The reduce function uses the hasnext and getnext functions to iterate through the
values in the ValueIterator object one at a time. Then, after aggregating the
intermediate results from the map function, the reduce function adds final key-value
pairs to the output using the add and addmulti functions. The order of the keys in
the output is the same as the order in which the reduce function adds them to the
final KeyValueStore object. That is, mapreduce does not explicitly sort the output.

Note The reduce function writes the final key-value pairs to a final KeyValueStore
object. From this object, mapreduce pulls the key-value pairs into the output
datastore, which is a KeyValueDatastore object by default.

Example MapReduce Calculation
This example uses a simple calculation (the mean travel distance in a set of flight data)
to illustrate the steps needed to run mapreduce.

Prepare Data

The first step to using mapreduce is to construct a datastore for the data set. Along with
the map and reduce functions, the datastore for a data set is a required input to
mapreduce, since it allows mapreduce to process the data in chunks.

mapreduce works with all types of datastores. For example, create a
TabularTextDatastore object for the airlinesmall.csv data set.

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA')

ds =

 TabularTextDatastore with properties:

 Getting Started with MapReduce

11-5

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
 }
 FileEncoding: 'UTF-8'
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: 'NA'
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows

Several of the previously described options are useful in the context of mapreduce. The
mapreduce function executes read on the datastore to retrieve data to pass to the
map function. Therefore, you can use the SelectedVariableNames,
SelectedFormats, and ReadSize options to directly configure the chunk size and type
of data that mapreduce passes to the map function.

For example, to select the Distance (total flight distance) variable as the only variable
of interest, specify SelectedVariableNames.
ds.SelectedVariableNames = 'Distance';

Now, whenever the read, readall, or preview functions act on ds, they will return
only information for the Distance variable. To confirm this, you can preview the first
few rows of data in the datastore. This allows you to examine the format of the data that
the mapreduce function will pass to the map function.
preview(ds)

11 Large Data

11-6

ans =

 Distance

 308
 296
 480
 296
 373
 308
 447
 954

To view the exact data that mapreduce will pass to the map function, use read.

For additional information and a complete summary of the available options, see
“Datastore”.

Write Map and Reduce Functions

The mapreduce function automatically calls the map and reduce functions during
execution, so these functions must meet certain requirements to run properly.

1 The inputs to the map function are data, info, and intermKVStore:

• data and info are the result of a call to the read function on the input
datastore, which mapreduce executes automatically before each call to the
map function.

• intermKVStore is the name of the intermediate KeyValueStore object to which
the map function needs to add key-value pairs. The add and addmulti functions
use this object name to add key-value pairs. If none of the calls to the map
function add key-value pairs to intermKVStore, then mapreduce does not call
the reduce function and the resulting datastore is empty.

A simple example of a map function is:

function MeanDistMapFun(data, info, intermKVStore)
 distances = data.Distance(~isnan(data.Distance));
 sumLenValue = [sum(distances) length(distances)];
 add(intermKVStore, 'sumAndLength', sumLenValue);
end

 Getting Started with MapReduce

11-7

This map function has only three lines, which perform some straightforward roles.
The first line filters out all NaN values in the chunk of distance data. The second line
creates a two-element vector with the total distance and count for the chunk, and the
third line adds that vector of values to intermKVStore with the key,
'sumAndLength'. After this map function runs on all of the chunks of data in ds,
the intermKVStore object contains the total distance and count for each chunk of
distance data.

Save this function in your current folder as MeanDistMapFun.m.
2 The inputs to the reduce function are intermKey, intermValIter, and

outKVStore:

• intermKey is for the active key added by the map function. Each call to the
reduce function by mapreduce specifies a new unique key from the keys in the
intermediate KeyValueStore object.

• intermValIter is the ValueIterator associated with the active key,
intermKey. This ValueIterator object contains all of the values associated
with the active key. Scroll through the values using the hasnext and getnext
functions.

• outKVStore is the name for the final KeyValueStore object to which the reduce
function needs to add key-value pairs. mapreduce takes the output key-value
pairs from outKVStore and returns them in the output datastore, which is a
KeyValueDatastore object by default. If none of the calls to the reduce function
add key-value pairs to outKVStore, then mapreduce returns an empty
datastore.

A simple example of a reduce function is:

function MeanDistReduceFun(intermKey, intermValIter, outKVStore)
 sumLen = [0 0];
 while hasnext(intermValIter)
 sumLen = sumLen + getnext(intermValIter);
 end
 add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

This reduce function loops through each of the distance and count values in
intermValIter, keeping a running total of the distance and count after each pass.
After this loop, the reduce function calculates the overall mean flight distance with a
simple division, and then adds a single key to outKVStore.

11 Large Data

11-8

Save this function in your current folder as MeanDistReduceFun.m.

For information about writing more advanced map and reduce functions, see “Write a
Map Function” on page 11-11 and “Write a Reduce Function” on page 11-16.

Run mapreduce

After you have a datastore, a map function, and a reduce function, you can call
mapreduce to perform the calculation. To calculate the average flight distance in the
data set, call mapreduce using ds, MeanDistMapFun.m, and MeanDistReduceFun.m.

outds = mapreduce(ds, @MeanDistMapFun, @MeanDistReduceFun);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 100%

By default, the mapreduce function displays progress information at the command line
and returns a KeyValueDatastore object that points to files in the current folder. You
can adjust all three of these options using the Name,Value pair arguments for
'OutputFolder', 'OutputType', and 'Display'. For more information, see the
reference page for mapreduce.

View Results

Use the readall function to read the key-value pairs from the output datastore.

readall(outds)

ans =

 Key Value
 ______ __________

 'Mean' [702.1630]

 Getting Started with MapReduce

11-9

See Also
datastore | mapreduce

Related Examples
• “Build Effective Algorithms with MapReduce” on page 11-24

11 Large Data

11-10

Write a Map Function
In this section...
“Role of Map Function in MapReduce” on page 11-11
“Requirements for Map Function” on page 11-12
“Sample Map Functions” on page 11-13

Role of Map Function in MapReduce
mapreduce requires both an input map function that receives chunks of data and that
outputs intermediate results, and an input reduce function that reads the intermediate
results and produces a final result. Thus, it is normal to break up a calculation into two
related pieces for the map and reduce functions to fulfill separately. For example, to find
the maximum value in a data set, the map function can find the maximum value in each
chunk of input data, and then the reduce function can find the single maximum value
among all of the intermediate maxima.

This figure shows the Map phase of the mapreduce algorithm.

 Write a Map Function

11-11

The Map phase of the mapreduce algorithm has the following steps:

1 mapreduce reads a single chunk of data using the read function on the input
datastore, then calls the map function to work on the chunk.

2 The map function then works on the individual chunk of data and adds one or more
key-value pairs to the intermediate KeyValueStore object using the add or
addmulti functions.

3 mapreduce repeats this process for each of the chunks of data in the input
datastore, so that the total number of calls to the map function is equal to the
number of chunks of data. The ReadSize property of the datastore determines the
number of data chunks.

The Map phase of the mapreduce algorithm is complete when the map function
processes each of the chunks of data in the input datastore. The result of this phase of
the mapreduce algorithm is a KeyValueStore object that contains all of the key-value
pairs added by the map function. After the Map phase, mapreduce prepares for the
Reduce phase by grouping all the values in the KeyValueStore object by unique key.

Requirements for Map Function

mapreduce automatically calls the map function for each chunk of data in the input
datastore. The map function must meet certain basic requirements to run properly
during these automatic calls. These requirements collectively ensure the proper
movement of data through the Map phase of the mapreduce algorithm.

The inputs to the map function are data, info, and intermKVStore:

• data and info are the result of a call to the read function on the input datastore,
which mapreduce executes automatically before each call to the map function.

• intermKVStore is the name of the intermediate KeyValueStore object to which the
map function needs to add key-value pairs. The add and addmulti functions use this
object name to add key-value pairs. If the map function does not add any key-value
pairs to the intermKVStore object, then mapreduce does not call the reduce
function and the resulting datastore is empty.

In addition to these basic requirements for the map function, the key-value pairs added
by the map function must also meet these conditions:

11 Large Data

11-12

1 Keys must be numeric scalars or character vectors. Numeric keys cannot be NaN,
complex, logical, or sparse.

2 All keys added by the map function must have the same class.
3 Values can be any MATLAB object, including all valid MATLAB data types.

Note The above key-value pair requirements may differ when using other products with
mapreduce. See the documentation for the appropriate product to get product-specific
key-value pair requirements.

Sample Map Functions
These examples contain some map functions used by the mapreduce examples in the
toolbox/matlab/demos folder.

Identity Map Function

A map function that simply returns what mapreduce passes to it is called an identity
mapper. An identity mapper is useful to take advantage of the grouping of values by
unique key before doing calculations in the reduce function. The identityMapper.m
mapper file is one of the mappers used in the example file TSQRMapReduceExample.m.

type identityMapper.m

function identityMapper(data, info, intermKVStore)
% Mapper function for the MapReduce TSQR example.
%
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.

% Copyright 2014 The MathWorks, Inc.

x = data.Value{:,:};
add(intermKVStore,'Identity', x);

Simple Map Function

One of the simplest examples of a nonidentity mapper is maxArrivalDelayMapper.m,
which is the mapper for the example file MaxMapReduceExample.m. For each chunk of
input data, this mapper calculates the maximum arrival delay and adds a key-value pair
to the intermediate KeyValueStore.

 Write a Map Function

11-13

type maxArrivalDelayMapper.m

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.

% Copyright 1984-2014 The MathWorks, Inc.

% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);

Advanced Map Function

A more advanced example of a mapper is statsByGroupMapper.m, which is the mapper
for the example file StatisticsByGroupMapReduceExample.m. This mapper uses a
nested function to calculate several statistical quantities (count, mean, variance, and so
on) for each chunk of input data, and then adds several key-value pairs to the
intermediate KeyValueStore object. Also, this mapper uses four input arguments,
whereas mapreduce only accepts a map function with three input arguments. To get
around this, pass in the extra parameter using an anonymous function during the call to
mapreduce, as outlined in the example.

type statsByGroupMapper.m

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Mapper function for the StatisticsByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data.(groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);

% find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);

11 Large Data

11-14

function out = grpstatsfun(x)
n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).^2)/n; % variance
s = sum((x-m).^3)/n; % skewness without normalization
k = sum((x-m).^4)/n; % kurtosis without normalization
out = {[n, m, v, s, k]};

More Map Functions

For more information about common programming patterns in map or reduce functions,
see “Build Effective Algorithms with MapReduce” on page 11-24.

See Also
add | addmulti | datastore | mapreduce

More About
• KeyValueStore
• “Write a Reduce Function” on page 11-16
• “Getting Started with MapReduce” on page 11-3

 See Also

11-15

Write a Reduce Function
In this section...
“Role of the Reduce Function in MapReduce” on page 11-16
“Requirements for Reduce Function” on page 11-17
“Sample Reduce Functions” on page 11-18

Role of the Reduce Function in MapReduce

mapreduce requires both an input map function that receives chunks of data and that
outputs intermediate results, and an input reduce function that reads the intermediate
results and produces a final result. Thus, it is normal to break up a calculation into two
related pieces for the map and reduce functions to fulfill separately. For example, to find
the maximum value in a data set, the map function can find the maximum value in each
chunk of input data, and then the reduce function can find the single maximum value
among all of the intermediate maxima.

This figure shows the Reduce phase of the mapreduce algorithm.

The Reduce phase of the mapreduce algorithm has the following steps:

11 Large Data

11-16

1 The result of the Map phase of the mapreduce algorithm is an intermediate
KeyValueStore object that contains all of the key-value pairs added by the map
function. Before calling the reduce function, mapreduce groups the values in the
intermediate KeyValueStore object by unique key. Each unique key in the
intermediate KeyValueStore object results in a single call to the reduce function.

2 For each key, mapreduce creates a ValueIterator object that contains all of the
values associated with that key.

3 The reduce function scrolls through the values from the ValueIterator object
using the hasnext and getnext functions, which are typically used in a while loop.

4 After performing a summary calculation, the reduce function adds one or more key-
value pairs to the final KeyValueStore object using the add and addmulti
functions.

The Reduce phase of the mapreduce algorithm is complete when the reduce function
processes all of the unique intermediate keys and their associated values. The result of
this phase of the mapreduce algorithm (similar to the Map phase) is a KeyValueStore
object containing all of the final key-value pairs added by the reduce function. After the
Reduce phase, mapreduce pulls the key-value pairs from the KeyValueStore and
returns them in a datastore (a KeyValueDatastore object by default). The key-value
pairs in the output datastore are not in sorted order; they appear in the same order as
they were added by the reduce function.

Requirements for Reduce Function
mapreduce automatically calls the reduce function for each unique key in the
intermediate KeyValueStore object, so the reduce function must meet certain basic
requirements to run properly during these automatic calls. These requirements
collectively ensure the proper movement of data through the Reduce phase of the
mapreduce algorithm.

The inputs to the reduce function are intermKey, intermValIter, and outKVStore:

• intermKey is one of the unique keys added by the map function. Each call to the
reduce function by mapreduce specifies a new unique key from the keys in the
intermediate KeyValueStore object.

• intermValIter is the ValueIterator object associated with the active key,
intermKey. This ValueIterator object contains all of the values associated with
the active key. Scroll through the values using the hasnext and getnext functions.

 Write a Reduce Function

11-17

• outKVStore is the name for the final KeyValueStore object to which the reduce
function needs to add key-value pairs. The add and addmulti functions use this
object name to add key-value pairs to the output. mapreduce takes the output key-
value pairs from outKVStore and returns them in the output datastore, which is a
KeyValueDatastore object by default. If the reduce function does not add any key-
value pairs to outKVStore, then mapreduce returns an empty datastore.

In addition to these basic requirements for the reduce function, the key-value pairs
added by the reduce function must also meet these conditions:

1 Keys must be numeric scalars or character vectors. Numeric keys cannot be NaN,
logical, complex, or sparse.

2 All keys added by the reduce function must have the same class, but that class may
differ from the class of the keys added by the map function.

3 If the OutputType argument of mapreduce is 'Binary' (the default), then a value
added by the reduce function can be any MATLAB object, including all valid
MATLAB data types.

4 If the OutputType argument of mapreduce is 'TabularText', then a value added
by the reduce function can be a numeric scalar or character vector. In this case, the
value cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products with
mapreduce. See the documentation for the appropriate product to get product-specific
key-value pair requirements.

Sample Reduce Functions

These examples contain some reduce functions used by the mapreduce examples in the
toolbox/matlab/demos folder.

Simple Reduce Function

One of the simplest examples of a reducer is maxArrivalDelayReducer.m, which is the
reducer for the example file MaxMapReduceExample.m. The map function in this
example finds the maximum arrival delay in each chunk of input data. Then the reduce
function finishes the task by finding the single maximum value among all of the
intermediate maxima. To find the maximum value, the reducer scrolls through the

11 Large Data

11-18

values in the ValueIterator object and compares each value to the current maximum.
mapreduce only calls this reducer function once, since the mapper adds a single unique
key to the intermediate KeyValueStore object. The reduce function adds a single key-
value pair to the output.
type maxArrivalDelayReducer.m

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MaxMapreduceExample.

% Copyright 2014 The MathWorks, Inc.

% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -inf;
while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,'MaxArrivalDelay',maxVal);

Advanced Reduce Function

A more advanced example of a reducer is statsByGroupReducer.m, which is the
reducer for the example file StatisticsByGroupMapReduceExample.m. The map
function in this example groups the data in each input using an extra parameter (airline
carrier, month, and so on), and then calculates several statistical quantities for each
group of data. The reduce function finishes the task by retrieving the statistical
quantities and concatenating them into long vectors, and then using the vectors to
calculate the final statistical quantities for count, mean, variance, skewness, and
kurtosis. The reducer stores these values as fields in a structure, so that each unique key
has a structure of statistical quantities in the output.
type statsByGroupReducer.m

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

n = [];
m = [];
v = [];
s = [];

 Write a Reduce Function

11-19

k = [];

% get all sets of intermediate statistics
while hasnext(intermValIter)
 value = getnext(intermValIter);
 n = [n; value(1)];
 m = [m; value(2)];
 v = [v; value(3)];
 s = [s; value(4)];
 k = [k; value(5)];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the
% CovarianceMapReduceExample for an alternative pairwise reduction approach

% combine the intermediate results
count = sum(n);
meanVal = sum(n.*m)/count;
d = m - meanVal;
variance = (sum(n.*v) + sum(n.*d.^2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
 'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% add results to the output datastore
add(outKVStore,intermKey,outValue);

More Reduce Functions

For more information about common programming patterns in map or reduce functions,
see “Build Effective Algorithms with MapReduce” on page 11-24.

See Also
add | addmulti | datastore | getnext | hasnext | mapreduce

More About
• KeyValueStore
• ValueIterator

11 Large Data

11-20

• “Write a Map Function” on page 11-11
• “Getting Started with MapReduce” on page 11-3

 See Also

11-21

Speed Up and Deploy MapReduce Using Other Products

In this section...
“Execution Environment” on page 11-22
“Running in Parallel” on page 11-22
“Application Deployment” on page 11-22

Execution Environment

To use mapreduce with Parallel Computing Toolbox™, MATLAB Distributed Computing
Server™, or MATLAB Compiler™, use the mapreducer configuration function to change
the execution environment for mapreduce. This enables you to start small to verify your
map and reduce functions, then quickly scale up to run larger calculations.

Running in Parallel

Parallel Computing Toolbox can immediately speed up your mapreduce algorithms by
using the full processing power of multicore computers to execute applications with a
parallel pool of workers. If you already have Parallel Computing Toolbox installed, then
you probably do not need to do anything special to take advantage of these capabilities.
For more information about using mapreduce with Parallel Computing Toolbox, see
“Run mapreduce on a Parallel Pool” (Parallel Computing Toolbox).

MATLAB Distributed Computing Server enables you to run the same applications on a
remote computer cluster. For more information, including how to configure MATLAB
Distributed Computing Server to support Hadoop clusters, see “Tall Arrays and
Mapreduce” (Parallel Computing Toolbox).

Application Deployment

MATLAB Compiler enables you to create standalone mapreduce applications or
deployable archives, which you can share with colleagues or deploy to production Hadoop
systems.

For more information, see “MapReduce Applications on Hadoop Clusters” (MATLAB
Compiler).

11 Large Data

11-22

See Also
gcmr | mapreducer

 See Also

11-23

Build Effective Algorithms with MapReduce
The mapreduce example files that ship with MATLAB illustrate different programming
techniques. You can use these examples as a starting point to quickly prototype similar
mapreduce calculations.

Note The associated files for these examples are all in the toolbox/matlab/demos/
folder.

Example Link Primary File Description Notable Programming
Techniques

“Find Maximum
Value with
MapReduce” on page
11-34

MaxMapReduceExam
ple.m

Find maximum
arrival delay

One intermediate
key and minimal
computation.

“Compute Mean
Value with
MapReduce” on page
11-38

MeanMapReduceExa
mple.m

Find mean arrival
delay

One intermediate
key with
intermediate state
(accumulating
intermediate sum
and count).

“Create Histograms
Using MapReduce”
on page 11-47

VisualizationMap
ReduceExample.m

Visualize data using
histograms

Low-volume
summaries of data,
sufficient to generate
a graphic and gain
preliminary insights.

“Compute Mean by
Group Using
MapReduce” on page
11-42

MeanByGroupMapRe
duceExample.m

Compute mean
arrival delay for each
day of the week

Perform simple
computations on
subgroups of input
data using several
intermediate keys.

11 Large Data

11-24

Example Link Primary File Description Notable Programming
Techniques

“Compute Maximum
Average HSV of
Images with
MapReduce” on page
11-92

HueSaturationVal
ueExample.m

Determine average
maximum hue,
saturation, and
brightness in an
image collection

Analyzes an image
datastore using
three intermediate
keys. The outputs
are filenames, which
can be used to view
the images.

“Simple Data
Subsetting Using
MapReduce” on page
11-56

SubsettingMapRed
uceExample.m

Create single table
from subset of large
data set

Extraction of subset
of large data set to
look for patterns.
The procedure is
generalized using a
parameterized map
function to pass in
the subsetting
criteria.

“Using MapReduce
to Compute
Covariance and
Related Quantities”
on page 11-65

CovarianceMapRed
uceExample.m

Compute covariance
and related
quantities

Calculate several
intermediate values
and store them with
the same key. Use
covariance to obtain
a correlation matrix
and regression
coefficients, and to
perform principal
components analysis.

 Build Effective Algorithms with MapReduce

11-25

Example Link Primary File Description Notable Programming
Techniques

“Compute Summary
Statistics by Group
Using MapReduce”
on page 11-71

StatisticsByGrou
pMapReduceExampl
e.m

Compute summary
statistics organized
by group

Use an anonymous
function to pass an
extra grouping
parameter to a
parameterized map
function. This
parameterization
allows you to quickly
recalculate statistics
using different
grouping variables.

“Using MapReduce
to Fit a Logistic
Regression Model”
on page 11-79

LogitMapReduceEx
ample.m

Fit simple logistic
regression model

Chain multiple
mapreduce calls to
carry out an iterative
regression algorithm.
An anonymous
function passes
information from one
iteration to the next
to supply
information directly
to the map function.

“Tall Skinny QR
(TSQR) Matrix
Factorization Using
MapReduce” on page
11-86

TSQRMapReduceExa
mple.m

Tall skinny QR
decomposition

Chain multiple
mapreduce calls to
perform multiple
iterations of
factorizations. Also
use the info input
argument of the map
function to compute
intermediate
numeric keys.

11 Large Data

11-26

Debug MapReduce Algorithms
This example shows how to debug your mapreduce algorithms in MATLAB using a
simple example file, MaxMapReduceExample.m. Debugging enables you to follow the
movement of data between the different phases of mapreduce execution and inspect the
state of all intermediate variables.

In this section...
“Set Breakpoint” on page 11-27
“Execute mapreduce” on page 11-28
“Step Through Map Function” on page 11-28
“Step Through Reduce Function” on page 11-30

Set Breakpoint

Set one or more breakpoints in your map or reduce function files so you can examine the
variable values where you think the problem is. For more information, see “Set
Breakpoints”.

Open the file maxArrivalDelayMapper.m.

edit maxArrivalDelayMapper.m

Set a breakpoint on line 9. This breakpoint causes execution of mapreduce to pause right
before each call to the map function adds a key-value pair to the intermediate
KeyValueStore object, named intermKVStore.

 Debug MapReduce Algorithms

11-27

Execute mapreduce

Run the mapreduce example file MaxMapReduceExample.m. Specify mapreducer(0) to
ensure that the algorithm does not run in parallel, since parallel execution of mapreduce
using Parallel Computing Toolbox ignores breakpoints.

mapreducer(0);
MaxMapReduceExample

MATLAB stops execution of the file when it encounters the breakpoint in the map
function. During the pause in execution, you can hover over the different variable names
in the map function, or type one of the variable names at the command line to inspect the
values.

In this case, the display indicates that, as yet, there are no key-value pairs in
intermKVStore.

Step Through Map Function

1 Continue past the breakpoint. You can use dbstep to execute a single line, or
dbcont to continue execution until MATLAB encounters another breakpoint.

Alternatively, you can click Step or Continue in the Editor tab. For more
information about all the available options, see “Debug a MATLAB Program”.

11 Large Data

11-28

In this case, use dbstep (or click Step) to execute only line 9, which adds a key-
value pair to intermKVStore. Inspect the new display for intermKVStore.

2
Now, use dbcont (or click Continue) to continue execution of mapreduce.
During the next call to the map function, MATLAB halts again on line 9. The new
display for intermKVStore indicates that it does not contain any key-value pairs,
because the display is meant to show only the most recent key-value pairs that are
added in the current call to the map (or reduce) function.

3
Step past line 9 again using dbstep (or click Step) to add the next key-value
pair to intermKVStore, and inspect the new display for the variable. MATLAB
displays only the key-value pair added during the current call to the map function.

 Debug MapReduce Algorithms

11-29

4 Complete the debugging of the map function by removing the breakpoint and closing
the file maxArrivalDelayMapper.m.

Step Through Reduce Function
1 You can use the same process to set breakpoints and step through execution of a

reduce function. The reduce function for this example is
maxArrivalDelayReducer.m. Open this file for editing.
edit maxArrivalDelayReducer.m

2 Set two breakpoints: one on line 10, and one on line 13. This enables you to inspect
the ValueIterator and the final key-value pairs added to the output, outKVStore.

3 Run the main example file.
MaxMapReduceExample

4 The execution of the example will pause when the breakpoint on line 10 is
encountered. The debug display for the ValueIterator indicates the active key and
whether any values remain to be retrieved.

11 Large Data

11-30

5
Now, remove the breakpoint on line 10 and use dbcont (or click Continue) to
continue execution of the example until the next breakpoint is reached (on line 13).
Since this reduce function continually compares each new value from the
ValueIterator to the global maximum, mapreduce execution ends by adding a
single key-value pair to outKVStore.

6
Use dbstep (or click Step) to execute line 13 only. The display for outKVStore
shows the global maximum value that mapreduce will return as the final answer.

 Debug MapReduce Algorithms

11-31

7
Now use dbcont (or click Continue) to advance execution, enabling the
example to finish running. mapreduce returns the final results.

Map 100% Reduce 100%

ans =

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

For a complete guide to debugging in MATLAB, see “Debugging”.

11 Large Data

11-32

See Also
mapreduce

More About
• KeyValueStore
• ValueIterator
• “Getting Started with MapReduce” on page 11-3

 See Also

11-33

Find Maximum Value with MapReduce
This example shows how to find the maximum value of a single variable in a data set
using mapreduce. It demonstrates the simplest use of mapreduce since there is only one
key and minimal computation.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, select ArrDelay (flight arrival delay) as the
variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans =

 8x1 table

 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

11 Large Data

11-34

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper finds the maximum arrival delay in each chunk of data. The
mapper then stores these maximum values as the intermediate values associated with
the key 'PartialMaxArrivalDelay'.

Display the map function file.

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.

% Copyright 1984-2014 The MathWorks, Inc.

% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);

The reducer receives a list of the maximum arrival delays for each chunk and finds the
overall maximum arrival delay from the list of values. mapreduce only calls this reducer
once, since the mapper only adds a single unique key. The reducer uses add to add a final
key-value pair to the output.

Display the reduce function file.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MaxMapreduceExample.

% Copyright 2014 The MathWorks, Inc.

% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -inf;
while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce

 Find Maximum Value with MapReduce

11-35

add(outKVStore,'MaxArrivalDelay',maxVal);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, maxDelay, with files in the current folder.

Read the final result from the output datastore, maxDelay.

readall(maxDelay)

ans =

 1x2 table

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

See Also
datastore | mapreduce

11 Large Data

11-36

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

 See Also

11-37

Compute Mean Value with MapReduce
This example shows how to compute the mean of a single variable in a data set using
mapreduce. It demonstrates a simple use of mapreduce with one key, minimal
computation, and an intermediate state (accumulating intermediate sum and count).

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, select ArrDelay (flight arrival delay) as the
variable of interest.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans =

 8x1 table

 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

11 Large Data

11-38

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper finds the count and sum of the arrival delays in each chunk
of data. The mapper then stores these values as the intermediate values associated with
the key 'PartialCountSumDelay'.

Display the map function file.

function meanArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MeanMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% Data is an n-by-1 table of the ArrDelay. Remove missing value first:
data(isnan(data.ArrDelay),:) = [];

% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, 'PartialCountSumDelay',partCountSum);

The reducer accepts the count and sum for each chunk stored by the mapper. It sums up
the values to obtain the total count and total sum. The overall mean arrival delay is a
simple division of the values. mapreduce only calls this reducer once, since the mapper
only adds a single unique key. The reducer uses add to add a single key-value pair to the
output.

Display the reduce function file.

function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MeanMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% intermKey is 'PartialCountSumDelay'
count = 0;
sum = 0;
while hasnext(intermValIter)

 Compute Mean Value with MapReduce

11-39

 countSum = getnext(intermValIter);
 count = count + countSum(1);
 sum = sum + countSum(2);
end

meanDelay = sum/count;

% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,'MeanArrivalDelay',meanDelay);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelay = mapreduce(ds, @meanArrivalDelayMapper, @meanArrivalDelayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelay, with files in the current folder.

Read the final result from the output datastore, meanDelay.

readall(meanDelay)

ans =

 1x2 table

 Key Value
 __________________ ________

11 Large Data

11-40

 'MeanArrivalDelay' [7.1201]

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

 See Also

11-41

Compute Mean by Group Using MapReduce
This example shows how to compute the mean by group in a data set using mapreduce.
It demonstrates how to do computations on subgroups of data.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, select DayOfWeek and ArrDelay (flight arrival
delay) as the variables of interest.
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'DayOfWeek'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x2 table

 ArrDelay DayOfWeek
 ________ _________

 8 3
 8 1
 21 5
 13 5
 4 4
 59 3
 3 4
 11 6

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

11 Large Data

11-42

In this example, the mapper computes the count and sum of delays by the day of week in
each chunk of data, and then stores the results as intermediate key-value pairs. The keys
are integers (1 to 7) representing the days of the week and the values are two-element
vectors representing the count and sum of the delay of each day.

Display the map function file.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Mapper function for the MeanByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN =~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore,intermKeys,intermVals);

function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, s]};

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key
(in this case, day of the week). Thus, each call to the reducer works on the values
associated with one day of the week. The reducer receives a list of the intermediate count
and sum of delays for the day specified by the input key (intermKey) and sums up the
values into the total count, n and total sum s. Then, the reducer calculates the overall
mean, and adds one final key-value pair to the output. This key-value pair represents the
mean flight arrival delay for one day of the week.

Display the reduce function file.

 Compute Mean by Group Using MapReduce

11-43

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MeanByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

n = 0;
s = 0;

% get all sets of intermediate results
while hasnext(intermValIter)
 intermValue = getnext(intermValIter);
 n = n + intermValue(1);
 s = s + intermValue(2);
end

% accumulate the sum and count
mean = s/n;
% add results to the output datastore
add(outKVStore,intermKey,mean);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelayByDay = mapreduce(ds, @meanArrivalDelayByDayMapper, ...
 @meanArrivalDelayByDayReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 14%
Map 100% Reduce 29%
Map 100% Reduce 43%
Map 100% Reduce 57%
Map 100% Reduce 71%
Map 100% Reduce 86%
Map 100% Reduce 100%

11 Large Data

11-44

mapreduce returns a datastore, meanDelayByDay, with files in the current folder.

Read the final result from the output datastore, meanDelayByDay.

result = readall(meanDelayByDay)

result =

 7x2 table

 Key Value
 ___ ________

 3 [7.0038]
 1 [7.0833]
 5 [9.4193]
 4 [9.3185]
 6 [4.2095]
 2 [5.8569]
 7 [6.5241]

Organize Results

The integer keys (1 to 7) represent the days of the week. To organize the results more,
convert the keys to a categorical array, retrieve the numeric values from the single
element cells, and rename the variable names of the resulting table.

result.Key = categorical(result.Key, 1:7, ...
 {'Mon','Tue','Wed','Thu','Fri','Sat','Sun'});
result.Value = cell2mat(result.Value);
result.Properties.VariableNames = {'DayOfWeek', 'MeanArrDelay'}

result =

 7x2 table

 DayOfWeek MeanArrDelay
 _________ ____________

 Wed 7.0038
 Mon 7.0833
 Fri 9.4193

 Compute Mean by Group Using MapReduce

11-45

 Thu 9.3185
 Sat 4.2095
 Tue 5.8569
 Sun 6.5241

Sort the rows of the table by mean flight arrival delay. This reveals that Saturday is the
best day of the week to travel, whereas Friday is the worst.

result = sortrows(result,'MeanArrDelay')

result =

 7x2 table

 DayOfWeek MeanArrDelay
 _________ ____________

 Sat 4.2095
 Tue 5.8569
 Sun 6.5241
 Wed 7.0038
 Mon 7.0833
 Thu 9.3185
 Fri 9.4193

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

11 Large Data

11-46

Create Histograms Using MapReduce
This example shows how to visualize patterns in a large data set without having to load
all of the observations into memory simultaneously. It demonstrates how to compute
lower volume summaries of the data that are sufficient to generate a graphic.

Histograms are a common visualization technique that give an empirical estimate of the
probability density function (pdf) of a variable. Histograms are well-suited to a big data
environment, because they can reduce the size of raw input data to a vector of counts.
Each count is the number of observations that falls within each of a set of contiguous,
numeric intervals or bins.

The mapreduce function computes counts separately on multiple chunks of the data.
Then mapreduce sums the counts from all chunks. The map function and reduce
function are both extremely simple in this example. Nevertheless, you can build flexible
visualizations with the summary information that they collect.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, select ArrDelay (flight arrival delay) as the
variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans =

 8x1 table

 ArrDelay

 8

 Create Histograms Using MapReduce

11-47

 8
 21
 13
 4
 59
 3
 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper collects the counts of flights with various amounts of arrival
delay by accumulating the arrival delays into bins. The bins are defined by the fourth
input argument to the map function, edges.

Display the map function file.

function visualizationMapper(data, ~, intermKVStore, edges)
%
% Count how many flights have have arrival delay that in each interval
% specified by the EDGES vector, and add these counts to INTERMKVSTORE.
%

counts = histc(data.ArrDelay, edges);

add(intermKVStore, 'Null', counts);

The bin size of the histogram is important. Bins that are too wide can obscure important
details in the data set. Bins that are too narrow can lead to a noisy histogram. When
working with very large data sets, it is best to avoid making multiple passes over the
data to try out different bin widths. A simple way to avoid making multiple passes is to
collect counts with bins that are narrow. Then, to get wider bins, you can aggregate
adjacent bin counts without reprocessing the raw data. The flight arrival delays are
reported in 1-minute increments, so define 1-minute bins from -60 minutes to 599
minutes.

edges = -60:599;

11 Large Data

11-48

Create an anonymous function to configure the map function to use the bin edges. The
anonymous function allows you to specialize the map function by specifying a particular
value for its fourth input argument. Then, you can call the map function via the
anonymous function, using only the three input arguments that the mapreduce function
expects.

ourVisualizationMapper = ...
 @(data, info, intermKVstore) visualizationMapper(data, info, intermKVstore, edges);

Display the reduce function file. The reducer sums the counts stored by the mapper.

function visualizationReducer(~, intermValList, outKVStore)
% get all intermediate results from the intermediate store

if hasnext(intermValList)
 outVal = getnext(intermValList);
else
 outVal = [];
end

while hasnext(intermValList)
 outVal = outVal + getnext(intermValList);
end

add(outKVStore, 'Null', outVal);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, ourVisualizationMapper, @visualizationReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

 Create Histograms Using MapReduce

11-49

mapreduce returns an output datastore, result, with files in the current folder.

Organize Results

Read the final bin count results from the output datastore.

r = readall(result);
counts = r.Value{1};

Visualize Results

Plot the raw bin counts using the whole range of the data (apart from a few outliers
excluded by the mapper).

bar(edges, counts, 'hist');
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Flight Counts')

11 Large Data

11-50

The histogram has long tails. Look at a restricted bin range to better visualize the delay
distribution of the majority of flights. Zooming in a bit reveals there is a reporting
artifact; it is common to round delays to 5-minute increments.

xlim([-50,50]);
grid on
grid minor

 Create Histograms Using MapReduce

11-51

Smooth the counts with a moving average filter to remove the 5-minute recording
artifact.

smoothCounts = filter((1/5)*ones(1,5), 1, counts);
figure
bar(edges, smoothCounts, 'hist')
xlim([-50,50]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Flight Counts')
grid on
grid minor

11 Large Data

11-52

To give the graphic a better balance, do not display the top 1% of most-delayed flights.
You can tailor the visualization in many ways without reprocessing the complete data
set, assuming that you collected the appropriate information during the full pass through
the data.

empiricalCDF = cumsum(counts);
empiricalCDF = empiricalCDF / empiricalCDF(end);
quartile99 = find(empiricalCDF>0.99, 1, 'first');
low99 = 1:quartile99;

figure
empiricalPDF = smoothCounts(low99) / sum(smoothCounts);
bar(edges(low99), empiricalPDF, 'hist');

 Create Histograms Using MapReduce

11-53

xlim([-60,edges(quartile99)]);
ylim([0, max(empiricalPDF)*1.05]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Probability Density')

See Also
datastore | mapreduce

11 Large Data

11-54

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

 See Also

11-55

Simple Data Subsetting Using MapReduce
This example shows how to extract a subset of a large data set.

There are two aspects of subsetting, or performing a query. One is selecting a subset of
the variables (columns) in the data set. The other is selecting a subset of the
observations, or rows.

In this example, the selection of variables takes place in the definition of the datastore.
(The map function could perform a further sub-selection of variables, but that is not
within the scope of this example). In this example, the role of the map function is to
perform the selection of observations. The role of the reduce function is to concatenate
the subsetted records extracted by each call to the map function. This approach assumes
that the data set can fit in memory after the Map phase.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. This example uses 15 variables out of the 29 variables available in
the data.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = ds.VariableNames([1 2 5 9 12 13 15 16 17 ...
 18 20 21 25 26 27]);
ds.SelectedVariableNames

ans =

 1x15 cell array

 Columns 1 through 4

 {'Year'} {'Month'} {'DepTime'} {'UniqueCarrier'}

 Columns 5 through 8

 {'ActualElapsedTime'} {'CRSElapsedTime'} {'ArrDelay'} {'DepDelay'}

 Columns 9 through 13

 {'Origin'} {'Dest'} {'TaxiIn'} {'TaxiOut'} {'CarrierDelay'}

11 Large Data

11-56

 Columns 14 through 15

 {'WeatherDelay'} {'NASDelay'}

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the specified variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x15 table

 Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay DepDelay Origin Dest TaxiIn TaxiOut CarrierDelay WeatherDelay NASDelay
 ____ _____ _______ _____________ _________________ ______________ ________ ________ ______ _____ ______ _______ ____________ ____________ ________

 1987 10 642 'PS' 53 57 8 12 'LAX' 'SJC' NaN NaN NaN NaN NaN
 1987 10 1021 'PS' 63 56 8 1 'SJC' 'BUR' NaN NaN NaN NaN NaN
 1987 10 2055 'PS' 83 82 21 20 'SAN' 'SMF' NaN NaN NaN NaN NaN
 1987 10 1332 'PS' 59 58 13 12 'BUR' 'SJC' NaN NaN NaN NaN NaN
 1987 10 629 'PS' 77 72 4 -1 'SMF' 'LAX' NaN NaN NaN NaN NaN
 1987 10 1446 'PS' 61 65 59 63 'LAX' 'SJC' NaN NaN NaN NaN NaN
 1987 10 928 'PS' 84 79 3 -2 'SAN' 'SFO' NaN NaN NaN NaN NaN
 1987 10 859 'PS' 155 143 11 -1 'SEA' 'LAX' NaN NaN NaN NaN NaN

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper receives a table with the variables described by the
SelectedVariableNames property in the datastore. Then, the mapper extracts flights
that had a high amount of delay after pushback from the gate. Specifically, it identifies
flights with a duration exceeding 2.5 times the length of the scheduled duration. The
mapper ignores flights prior to 1995, because some of the variables of interest for this
example were not collected before that year.

Display the map function file.

 Simple Data Subsetting Using MapReduce

11-57

function subsettingMapper(data, ~, intermKVStore)
% Select flights from 1995 and later that had exceptionally long
% elapsed flight times (including both time on the tarmac and time in
% the air).

% Copyright 2014 The MathWorks, Inc.

idx = data.Year > 1994 & (data.ActualElapsedTime - data.CRSElapsedTime)...
 > 1.50 * data.CRSElapsedTime;
intermVal = data(idx,:);

add(intermKVStore,'Null',intermVal);

The reducer receives the subsetted observations obtained from the mapper and simply
concatenates them into a single table. The reducer returns one key (which is relatively
meaningless) and one value (the concatenated table).

Display the reduce function file.

function subsettingReducer(~, intermValList, outKVStore)
% Reducer function for the SubsettingMapReduceExample

% Copyright 2014 The MathWorks, Inc.

% get all intermediate results from the list
outVal = {};

while hasnext(intermValList)
 outVal = [outVal; getnext(intermValList)];
end
% Note that this approach assumes the concatenated intermediate values (the
% subset of the whole data) fit in memory.

add(outKVStore, 'Null', outVal);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, @subsettingMapper, @subsettingReducer);

* MAPREDUCE PROGRESS *

11 Large Data

11-58

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result, with files in the current folder.

Display Results

Look for patterns in the first 10 variables that were pulled from the data set. These
variables identify the airline, the destination, and the arrival airports, as well as some
basic delay information.
r = readall(result);
tbl = r.Value{1};
tbl(:,1:10)

ans =

 37x10 table

 Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay DepDelay Origin Dest
 ____ _____ _______ _____________ _________________ ______________ ________ ________ ______ _____

 1995 6 1601 'US' 162 58 118 14 'BWI' 'PIT'
 1996 6 1834 'CO' 241 75 220 54 'IAD' 'EWR'
 1997 1 730 'DL' 110 43 137 70 'ATL' 'GSP'
 1997 4 1715 'UA' 152 57 243 148 'IND' 'ORD'
 1997 9 2232 'NW' 143 50 115 22 'DTW' 'CMH'
 1997 10 1419 'CO' 196 58 157 19 'DFW' 'IAH'
 1998 3 2156 'DL' 139 49 146 56 'TYS' 'ATL'
 1998 10 1803 'NW' 291 81 213 3 'MSP' 'ORD'
 2000 5 830 'WN' 140 55 85 0 'DAL' 'HOU'
 2000 8 1630 'CO' 357 123 244 10 'EWR' 'CLT'
 2002 6 1759 'US' 260 67 192 -1 'LGA' 'BOS'
 2003 3 1214 'XE' 214 84 124 -6 'GPT' 'IAH'
 2003 3 604 'XE' 175 60 114 -1 'LFT' 'IAH'
 2003 4 1556 'MQ' 142 52 182 92 'PIA' 'ORD'

 Simple Data Subsetting Using MapReduce

11-59

 2003 5 1954 'US' 127 48 78 -1 'RDU' 'CLT'
 2003 7 1250 'FL' 261 95 166 0 'ATL' 'IAD'
 2003 8 2010 'AA' 339 115 406 182 'BHM' 'DFW'
 2004 3 1238 'MQ' 184 69 115 0 'AMA' 'DFW'
 2004 7 1730 'DL' 241 68 173 0 'DCA' 'LGA'
 2004 8 1330 'XE' 204 80 124 0 'HRL' 'IAH'
 2005 7 1951 'MQ' 251 97 345 191 'RDU' 'JFK'
 2005 10 916 'MQ' 343 77 266 0 'LIT' 'DFW'
 2006 2 324 'B6' 1650 199 415 -1036 'BOS' 'FLL'
 2006 5 1444 'CO' 167 60 131 24 'IAH' 'SAT'
 2006 5 1250 'DL' 148 59 109 20 'DCA' 'LGA'
 2006 7 1030 'WN' 211 80 226 95 'PIT' 'MDW'
 2006 7 1424 'MQ' 254 69 259 74 'LGA' 'DCA'
 2006 11 2147 'UA' 222 77 160 15 'DEN' 'ICT'
 2006 11 1307 'AA' 175 60 132 17 'DFW' 'AUS'
 2007 10 1141 'OO' 137 54 107 24 'PIA' 'ORD'
 2008 1 1027 'MQ' 139 55 96 12 'MLI' 'ORD'
 2008 1 2049 'MQ' 151 60 175 84 'AZO' 'ORD'
 2008 2 818 'WN' 280 95 198 13 'MHT' 'BWI'
 2008 4 1014 'CO' 151 58 92 -1 'SAT' 'IAH'
 2008 6 2000 'OH' 263 104 204 45 'JFK' 'BOS'
 2008 6 1715 'AA' 271 90 201 20 'RDU' 'LGA'
 2008 11 1603 'XE' 183 73 124 14 'BTR' 'IAH'

Looking at the first record, a U.S. Air flight departed the gate 14 minutes after its
scheduled departure time and arrived 118 minutes late. The flight experienced a delay of
104 minutes after pushback from the gate which is the difference between
ActualElapsedTime and CRSElapsedTime.

There is one anomalous record. In February of 2006, a JetBlue flight had a departure
time of 3:24 a.m. and an elapsed flight time of 1650 minutes, but an arrival delay of only
415 minutes. This might be a data entry error.

Otherwise, there are no clear cut patterns concerning when and where these
exceptionally delayed flights occur. No airline, time of year, time of day, or single airport
dominates. Some intuitive patterns, such as O'Hare (ORD) in the winter months, are
certainly present.

Delay Patterns

Beginning in 1995, the airline system performance data began including measurements
of how much delay took place in the taxi phases of a flight. Then, in 2003, the data also
began to include certain causes of delay.

11 Large Data

11-60

Examine these two variables in closer detail.

tbl(:,[1,7,8,11:end])

ans =

 37x8 table

 Year ArrDelay DepDelay TaxiIn TaxiOut CarrierDelay WeatherDelay NASDelay
 ____ ________ ________ ______ _______ ____________ ____________ ________

 1995 118 14 7 101 NaN NaN NaN
 1996 220 54 12 180 NaN NaN NaN
 1997 137 70 2 12 NaN NaN NaN
 1997 243 148 4 38 NaN NaN NaN
 1997 115 22 4 98 NaN NaN NaN
 1997 157 19 6 95 NaN NaN NaN
 1998 146 56 9 47 NaN NaN NaN
 1998 213 3 11 205 NaN NaN NaN
 2000 85 0 5 51 NaN NaN NaN
 2000 244 10 4 273 NaN NaN NaN
 2002 192 -1 6 217 NaN NaN NaN
 2003 124 -6 13 131 NaN NaN NaN
 2003 114 -1 8 106 NaN NaN NaN
 2003 182 92 9 106 NaN NaN NaN
 2003 78 -1 5 90 NaN NaN NaN
 2003 166 0 11 170 0 0 166
 2003 406 182 242 10 0 0 224
 2004 115 0 6 61 0 0 115
 2004 173 0 5 161 0 0 173
 2004 124 0 9 102 0 0 124
 2005 345 191 54 125 0 0 345
 2005 266 0 13 183 0 0 266
 2006 415 -1036 4 12 14 0 11
 2006 131 24 7 118 0 6 107
 2006 109 20 4 105 20 0 89
 2006 226 95 5 130 0 0 226
 2006 259 74 6 208 39 0 185
 2006 160 15 3 158 15 0 145
 2006 132 17 4 127 0 17 115
 2007 107 24 7 100 0 0 107
 2008 96 12 25 72 0 0 96
 2008 175 84 12 107 0 0 91
 2008 198 13 4 190 0 0 185

 Simple Data Subsetting Using MapReduce

11-61

 2008 92 -1 9 93 0 0 92
 2008 204 45 12 212 0 45 159
 2008 201 20 4 193 0 0 201
 2008 124 14 12 93 0 0 110

For these exceptionally delayed flights, the great majority of delay occurs during taxi out,
on the tarmac. Moreover, the major cause of the delay is NASDelay. NAS delays are
holds imposed by the national aviation authorities on departures headed for an airport
that is forecast to be unable to handle all scheduled arrivals at the time the flight is
scheduled to arrive. NAS delay programs in effect at any given time are posted at http://
www.fly.faa.gov/ois/.

Preferably, when NAS delays are imposed, boarding of the aircraft is simply delayed.
Such a delay would show up as a departure delay. However, for most of the flights
selected for this example, the delays took place largely after departure from the gate,
leading to a taxi delay.

Rerun MapReduce

The previous map function had the subsetting criteria hard-wired in the function file. A
new map function would have to be written for any new query, such as flights departing
San Francisco on a given day.

A generic mapper can be more adaptive by separating out the subsetting criteria from
the map function definition and using an anonymous function to configure the mapper
for each query. This generic mapper uses a fourth input argument that supplies the
desired query variable.

Display the generic map function file.

function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)

intermKey = 'Null';

intermVal = data(subsetter(data), :);

add(intermKVStore,intermKey,intermVal);

Create an anonymous function that performs the same selection of rows that is hard-
coded in subsettingMapper.m.

11 Large Data

11-62

http://www.fly.faa.gov/ois/
http://www.fly.faa.gov/ois/

inFlightDelay150percent = ...
 @(data) data.Year > 1994 & ...
 (data.ActualElapsedTime-data.CRSElapsedTime) > 1.50*data.CRSElapsedTime;

Since the mapreduce function requires the map and reduce functions to accept exactly
three inputs, use another anonymous function to specify the fourth input to the mapper,
subsettingMapperGeneric.m. Subsequently, you can use this anonymous function to
call subsettingMapperGeneric.m using only three arguments (the fourth is implicit).

configuredMapper = ...
 @(data, info, intermKVStore) subsettingMapperGeneric(data, info, ...
 intermKVStore, inFlightDelay150percent);

Use mapreduce to apply the generic map function to the input datastore.

result2 = mapreduce(ds, configuredMapper, @subsettingReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result2, with files in the current folder.

Verify Results

Confirm that the generic mapper gets the same result as with the hard-wired subsetting
logic.
r2 = readall(result2);
tbl2 = r2.Value{1};

if isequaln(tbl, tbl2)
 disp('Same results with the configurable mapper.')
else
 disp('Oops, back to the drawing board.')
end

 Simple Data Subsetting Using MapReduce

11-63

Same results with the configurable mapper.

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

11 Large Data

11-64

Using MapReduce to Compute Covariance and Related
Quantities

This example shows how to compute the mean and covariance for several variables in a
large data set using mapreduce. It then uses the covariance to perform several follow-up
calculations that do not require another iteration over the entire data set.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, select ActualElapsedTime (total flight time),
Distance (total flight distance), DepDelay (flight departure delay), and ArrDelay
(flight arrival delay) as the variables of interest.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ActualElapsedTime', 'Distance', ...
 'DepDelay', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x4 table

 ActualElapsedTime Distance DepDelay ArrDelay
 _________________ ________ ________ ________

 53 308 12 8
 63 296 1 8
 83 480 20 21
 59 296 12 13
 77 373 -1 4
 61 308 63 59
 84 447 -2 3
 155 954 -1 11

 Using MapReduce to Compute Covariance and Related Quantities

11-65

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper computes the count, mean, and covariance for the variables
in each chunk of data in the datastore, ds. Then, the mapper stores the computed values
for each chunk as an intermediate key-value pair consisting of a single key with a cell
array containing the three computed values.

Display the map function file.

function covarianceMapper(t,~,intermKVStore)
%covarianceMapper Mapper function for mapreduce to compute covariance

% Copyright 2014 The MathWorks, Inc.

% Get data from input table and remove any rows with missing values
x = t{:,:};
x = x(~any(isnan(x),2),:);

% Compute and save the count, mean, and covariance
n = size(x,1);
m = mean(x,1);
c = cov(x,1);

% Store these as a single item in the intermediate key/value store
add(intermKVStore,'key',{n m c})
end

The reducer combines the intermediate results for each chunk to obtain the count, mean,
and covariance for each variable of interest in the entire data set. The reducer stores the
final key-value pairs for the keys 'count', 'mean', and 'cov' with the corresponding
values for each variable.

Display the reduce function file.

function covarianceReducer(~,intermValIter,outKVStore)
%covarianceReducer Reducer function for mapreduce to compute covariance

11 Large Data

11-66

% Copyright 2014 The MathWorks, Inc.

% We will combine results computed in the mapper for different chunks of
% the data, updating the count, mean, and covariance each time we add a new
% chunk.

% First, initialize everything to zero (scalar 0 is okay)
n1 = 0; % no rows so far
m1 = 0; % mean so far
c1 = 0; % covariance so far

while hasnext(intermValIter)
 % Get the next chunk, and extract the count, mean, and covariance
 t = getnext(intermValIter);
 n2 = t{1};
 m2 = t{2};
 c2 = t{3};

 % Use weighting formulas to update the values so far
 n = n1+n2; % new count
 m = (n1*m1 + n2*m2) / n; % new mean

 % New covariance is a weighted combination of the two covariance, plus
 % additional terms that relate to the difference in means
 c1 = (n1*c1 + n2*c2 + n1*(m1-m)'*(m1-m) + n2*(m2-m)'*(m2-m))/ n;

 % Store the new mean and count for the next iteration
 m1 = m;
 n1 = n;
end

% Save results in the output key/value store
add(outKVStore,'count',n1);
add(outKVStore,'mean',m1);
add(outKVStore,'cov',c1);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outds = mapreduce(ds, @covarianceMapper, @covarianceReducer);

* MAPREDUCE PROGRESS *

 Using MapReduce to Compute Covariance and Related Quantities

11-67

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, outds, with files in the current folder.

View the results of the mapreduce call by using the readall function on the output
datastore.

results = readall(outds)
Count = results.Value{1};
MeanVal = results.Value{2};
Covariance = results.Value{3};

results =

 3x2 table

 Key Value
 _______ ____________

 'count' [120664]
 'mean' [1x4 double]
 'cov' [4x4 double]

Compute Correlation Matrix

The covariance, mean, and count values are useful to perform further calculations.
Compute a correlation matrix by finding the standard deviations and normalizing them
to correlation form.

s = sqrt(diag(Covariance));
Correlation = Covariance ./ (s*s')

Correlation =

11 Large Data

11-68

 1.0000 0.9666 0.0278 0.0902
 0.9666 1.0000 0.0216 0.0013
 0.0278 0.0216 1.0000 0.8748
 0.0902 0.0013 0.8748 1.0000

The elapsed time (first column) and distance (second column) are highly correlated, since
Correlation(2,1) = 0.9666. The departure delay (third column) and arrival delay
(fourth column) are also highly correlated, since Correlation(4,3) = 0.8748.

Compute Regression Coefficients

Compute some regression coefficients to predict the arrival delay, ArrDelay, using the
other three variables as predictors.

slopes = Covariance(1:3,1:3)\Covariance(1:3,4);
intercept = MeanVal(4) - MeanVal(1:3)*slopes;
b = table([intercept; slopes], 'VariableNames', {'Estimate'}, ...
 'RowNames', {'Intercept','ActualElapsedTime','Distance','DepDelay'})

b =

 4x1 table

 Estimate

 Intercept -19.912
 ActualElapsedTime 0.56278
 Distance -0.068721
 DepDelay 0.94689

Perform PCA

Use svd to perform PCA (principal components analysis). PCA is a technique for finding
a lower dimensional summary of a data set. The following calculation is a simplified
version of PCA, but more options are available from the pca and pcacov functions in
Statistics and Machine Learning Toolbox™.

You can carry out PCA using either the covariance or correlation. In this case, use the
correlation since the difference in scale of the variables is large. The first two components
capture most of the variance.

 Using MapReduce to Compute Covariance and Related Quantities

11-69

[~,latent,pcacoef] = svd(Correlation);
latent = diag(latent)

latent =

 2.0052
 1.8376
 0.1407
 0.0164

Display the coefficient matrix. Each column of the coefficients matrix describes how one
component is defined as a linear combination of the standardized original variables. The
first component is mostly an average of the first two variables, with some additional
contribution from the other variables. Similarly, the second component is mostly an
average of the last two variables.

pcacoef

pcacoef =

 -0.6291 0.3222 -0.2444 -0.6638
 -0.6125 0.3548 0.2591 0.6572
 -0.3313 -0.6244 0.6673 -0.2348
 -0.3455 -0.6168 -0.6541 0.2689

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

11 Large Data

11-70

Compute Summary Statistics by Group Using MapReduce
This example shows how to compute summary statistics organized by group using
mapreduce. It demonstrates the use of an anonymous function to pass an extra grouping
parameter to a parameterized map function. This parameterization allows you to quickly
recalculate the statistics using a different grouping variable.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. For this example, select Month, UniqueCarrier (airline carrier
ID), and ArrDelay (flight arrival delay) as the variables of interest.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'Month', 'UniqueCarrier', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x3 table

 Month UniqueCarrier ArrDelay
 _____ _____________ ________

 10 'PS' 8
 10 'PS' 8
 10 'PS' 21
 10 'PS' 13
 10 'PS' 4
 10 'PS' 59
 10 'PS' 3
 10 'PS' 11

 Compute Summary Statistics by Group Using MapReduce

11-71

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives chunks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper computes the grouped statistics for each chunk of data and
stores the statistics as intermediate key-value pairs. Each intermediate key-value pair
has a key for the group level and a cell array of values with the corresponding statistics.

This map function accepts four input arguments, whereas the mapreduce function
requires the map function to accept exactly three input arguments. The call to
mapreduce (below) shows how to pass in this extra parameter.

Display the map function file.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Mapper function for the StatisticsByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data.(groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);

% find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);

function out = grpstatsfun(x)
n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).^2)/n; % variance
s = sum((x-m).^3)/n; % skewness without normalization
k = sum((x-m).^4)/n; % kurtosis without normalization
out = {[n, m, v, s, k]};

11 Large Data

11-72

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key
(in this case, the airline carrier ID), so each call to the reduce function works on the
values associated with one airline. The reducer receives a list of the intermediate
statistics for the airline specified by the input key (intermKey) and combines the
statistics into separate vectors: n, m, v, s, and k. Then, the reducer uses these vectors to
calculate the count, mean, variance, skewness, and kurtosis for a single airline. The final
key is the airline carrier code, and the associated values are stored in a structure with
five fields.

Display the reduce function file.

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

n = [];
m = [];
v = [];
s = [];
k = [];

% get all sets of intermediate statistics
while hasnext(intermValIter)
 value = getnext(intermValIter);
 n = [n; value(1)];
 m = [m; value(2)];
 v = [v; value(3)];
 s = [s; value(4)];
 k = [k; value(5)];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the
% CovarianceMapReduceExample for an alternative pairwise reduction approach

% combine the intermediate results
count = sum(n);
meanVal = sum(n.*m)/count;
d = m - meanVal;
variance = (sum(n.*v) + sum(n.*d.^2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);

 Compute Summary Statistics by Group Using MapReduce

11-73

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
 'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% add results to the output datastore
add(outKVStore,intermKey,outValue);

Use mapreduce to apply the map and reduce functions to the datastore, ds. Since the
parameterized map function accepts four inputs, use an anonymous function to pass in
the airline carrier IDs as the fourth input.

outds1 = mapreduce(ds, ...
 @(data,info,kvs)statsByGroupMapper(data,info,kvs,'UniqueCarrier'), ...
 @statsByGroupReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

mapreduce returns a datastore, outds1, with files in the current folder.

Read the final results from the output datastore.

r1 = readall(outds1)

r1 =

11 Large Data

11-74

 29x2 table

 Key Value
 ________ ____________

 'PS' [1x1 struct]
 'TW' [1x1 struct]
 'UA' [1x1 struct]
 'WN' [1x1 struct]
 'EA' [1x1 struct]
 'HP' [1x1 struct]
 'NW' [1x1 struct]
 'PA (1)' [1x1 struct]
 'PI' [1x1 struct]
 'CO' [1x1 struct]
 'DL' [1x1 struct]
 'AA' [1x1 struct]
 'US' [1x1 struct]
 'AS' [1x1 struct]
 'ML (1)' [1x1 struct]
 'AQ' [1x1 struct]
 'MQ' [1x1 struct]
 'OO' [1x1 struct]
 'XE' [1x1 struct]
 'TZ' [1x1 struct]
 'EV' [1x1 struct]
 'FL' [1x1 struct]
 'B6' [1x1 struct]
 'DH' [1x1 struct]
 'HA' [1x1 struct]
 'OH' [1x1 struct]
 'F9' [1x1 struct]
 'YV' [1x1 struct]
 '9E' [1x1 struct]

Organize Results

To organize the results better, convert the structure containing the statistics into a table
and use the carrier IDs as the row names. mapreduce returns the key-value pairs in the
same order as they were added by the reduce function, so sort the table by carrier ID.
statsByCarrier = struct2table(cell2mat(r1.Value), 'RowNames', r1.Key);
statsByCarrier = sortrows(statsByCarrier, 'RowNames')

 Compute Summary Statistics by Group Using MapReduce

11-75

statsByCarrier =

 29x5 table

 Count Mean Variance Skewness Kurtosis
 _____ _______ ________ ________ ________

 9E 507 5.3669 1889.5 6.2676 61.706
 AA 14578 6.9598 1123 6.0321 93.085
 AQ 153 1.0065 230.02 3.9905 28.383
 AS 2826 8.0771 717 3.6547 24.083
 B6 793 11.936 2087.4 4.0072 27.45
 CO 7999 7.048 1053.8 4.6601 41.038
 DH 673 7.575 1491.7 2.9929 15.461
 DL 16284 7.4971 697.48 4.4746 41.115
 EA 875 8.2434 1221.3 5.2955 43.518
 EV 1655 10.028 1325.4 2.9347 14.878
 F9 332 8.4849 1138.6 4.2983 30.742
 FL 1248 9.5144 1360.4 3.6277 21.866
 HA 271 -1.5387 323.27 8.4245 109.63
 HP 3597 7.5897 744.51 5.2534 50.004
 ML (1) 69 0.15942 169.32 2.8354 16.559
 MQ 3805 8.8591 1530.5 7.054 105.51
 NW 10097 5.4265 977.64 8.616 172.87
 OH 1414 7.7617 1224 3.57 24.52
 OO 3010 5.8618 1010.4 4.4263 32.783
 PA (1) 313 5.3738 692.19 3.2061 20.747
 PI 861 11.252 1121.1 14.751 315.59
 PS 82 5.3902 454.51 2.9682 14.383
 TW 3718 7.411 830.76 4.139 30.67
 TZ 215 1.907 814.63 2.8269 13.758
 UA 12955 8.3939 1046.6 3.9742 28.187
 US 13666 6.8027 760.83 4.6905 47.975
 WN 15749 5.4581 562.49 4.0439 30.403
 XE 2294 8.8082 1410.1 3.7114 23.235
 YV 827 12.376 2192.6 3.9315 26.446

Change Grouping Parameter

The use of an anonymous function to pass in the grouping variable allows you to quickly
recalculate the statistics with a different grouping.

11 Large Data

11-76

For this example, recalculate the statistics and group the results by Month, instead of by
the carrier IDs, by simply passing the Month variable into the anonymous function.

outds2 = mapreduce(ds, ...
 @(data,info,kvs)statsByGroupMapper(data,info,kvs,'Month'), ...
 @statsByGroupReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 17%
Map 100% Reduce 33%
Map 100% Reduce 50%
Map 100% Reduce 67%
Map 100% Reduce 83%
Map 100% Reduce 100%

Read the final results and organize them into a table.

r2 = readall(outds2);
r2 = sortrows(r2,'Key');
statsByMonth = struct2table(cell2mat(r2.Value));
mon = {'Jan','Feb','Mar','Apr','May','Jun', ...
 'Jul','Aug','Sep','Oct','Nov','Dec'};
statsByMonth.Properties.RowNames = mon

statsByMonth =

 12x5 table

 Count Mean Variance Skewness Kurtosis
 _____ ______ ________ ________ ________

 Jan 9870 8.5954 973.69 4.1142 35.152
 Feb 9160 7.3275 911.14 4.7241 45.03
 Mar 10219 7.5536 976.34 5.1678 63.155

 Compute Summary Statistics by Group Using MapReduce

11-77

 Apr 9949 6.0081 1077.4 8.9506 170.52
 May 10180 5.2949 737.09 4.0535 30.069
 Jun 10045 10.264 1266.1 4.8777 43.5
 Jul 10340 8.7797 1069.7 5.1428 64.896
 Aug 10470 7.4522 908.64 4.1959 29.66
 Sep 9691 3.6308 664.22 4.6573 38.964
 Oct 10590 4.6059 684.94 5.6407 74.805
 Nov 10071 5.2835 808.65 8.0297 186.68
 Dec 10281 10.571 1087.6 3.8564 28.823

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

11 Large Data

11-78

Using MapReduce to Fit a Logistic Regression Model
This example shows how to use mapreduce to carry out simple logistic regression using
a single predictor. It demonstrates chaining multiple mapreduce calls to carry out an
iterative algorithm. Since each iteration requires a separate pass through the data, an
anonymous function passes information from one iteration to the next to supply
information directly to the mapper.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, the variables of interest are ArrDelay (flight
arrival delay) and Distance (total flight distance).

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'Distance'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the specified variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x2 table

 ArrDelay Distance
 ________ ________

 8 308
 8 296
 21 480
 13 296
 4 373
 59 308
 3 447
 11 954

 Using MapReduce to Fit a Logistic Regression Model

11-79

Perform Logistic Regression

Logistic regression is a way to model the probability of an event as a function of another
variable. In this example, logistic regression models the probability of a flight being more
than 20 minutes late as a function of the flight distance, in thousands of miles.

To accomplish this logistic regression, the map and reduce functions must collectively
perform a weighted least-squares regression based on the current coefficient values. The
mapper computes a weighted sum of squares and cross product for each chunk of input
data.

Display the map function file.

function logitMapper(b,t,~,intermKVStore)
%logitMapper Mapper function for mapreduce to perform logistic regression.

% Copyright 2014 The MathWorks, Inc.

% Get data input table and remove any rows with missing values
y = t.ArrDelay;
x = t.Distance;
t = ~isnan(x) & ~isnan(y);
y = y(t)>20; % late by more than 20 min
x = x(t)/1000; % distance in thousands of miles

% Compute the linear combination of the predictors, and the estimated mean
% probabilities, based on the coefficients from the previous iteration
if ~isempty(b)
 % Compute xb as the linear combination using the current coefficient
 % values, and derive mean probabilities mu from them
 xb = b(1)+b(2)*x;
 mu = 1./(1+exp(-xb));
else
 % This is the first iteration. Compute starting values for mu that are
 % 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
 mu = (y+.5)/2;
 xb = log(mu./(1-mu));
end

% We want to perform weighted least squares. We do this by computing a sum
% of squares and cross products matrix
% (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
% where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].

11 Large Data

11-80

%
% Here in the mapper we receive one chunk at a time, so we compute one of
% the terms on the right hand side. The reducer will add them up to get the
% quantity on the left hand side, and then peform the regression.
w = (mu.*(1-mu)); % weights
z = xb + (y - mu) .* 1./w; % adjusted response

X = [ones(size(x)),x,z]; % matrix of unweighted data
wss = X' * bsxfun(@times,w,X); % weighted cross-products X1'*W1*X1

% Store the results for this part of the data.
add(intermKVStore, 'key', wss);

The reducer computes the regression coefficient estimates from the sums of squares and
cross products.

Display the reduce function file.

function logitReducer(~,intermValIter,outKVStore)
%logitReducer Reducer function for mapreduce to perform logistic regression

% Copyright 2014 The MathWorks, Inc.

% We will operate over chunks of the data, updating the count, mean, and
% covariance each time we add a new chunk
old = 0;

% We want to perform weighted least squares. We do this by computing a sum
% of squares and cross products matrix
% M = (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
% where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].
%
% The mapper has computed the terms on the right hand side. Here in the
% reducer we just add them up.

while hasnext(intermValIter)
 new = getnext(intermValIter);
 old = old+new;
end
M = old; % the value on the left hand side

% Compute coefficients estimates from M. M is a matrix of sums of squares
% and cross products for [X Y] where X is the design matrix including a

 Using MapReduce to Fit a Logistic Regression Model

11-81

% constant term and Y is the adjusted response for this iteration. In other
% words, Y has been included as an additional column of X. First we
% separate them by extracting the X'*W*X part and the X'*W*Y part.
XtWX = M(1:end-1,1:end-1);
XtWY = M(1:end-1,end);

% Solve the normal equations.
b = XtWX\XtWY;

% Return the vector of coefficient estimates.
add(outKVStore, 'key', b);

Run MapReduce

Run mapreduce iteratively by enclosing the calls to mapreduce in a loop. The loop runs
until the convergence criteria are met, with a maximum of five iterations.

% Define the coefficient vector, starting as empty for the first iteration.
b = [];

for iteration = 1:5
 b_old = b;
 iteration

 % Here we will use an anonymous function as our mapper. This function
 % definition includes the value of b computed in the previous
 % iteration.
 mapper = @(t,ignore,intermKVStore) logitMapper(b,t,ignore,intermKVStore);
 result = mapreduce(ds, mapper, @logitReducer, 'Display', 'off');

 tbl = readall(result);
 b = tbl.Value{1}

 % Stop iterating if we have converged.
 if ~isempty(b_old) && ...
 ~any(abs(b-b_old) > 1e-6 * abs(b_old))
 break
 end
end

iteration =

 1

11 Large Data

11-82

b =

 -1.7674
 0.1209

iteration =

 2

b =

 -1.8327
 0.1807

iteration =

 3

b =

 -1.8331
 0.1806

iteration =

 4

b =

 -1.8331
 0.1806

 Using MapReduce to Fit a Logistic Regression Model

11-83

View Results

Use the resulting regression coefficient estimates to plot a probability curve. This curve
shows the probability of a flight being more than 20 minutes late as a function of the
flight distance.

xx = linspace(0,4000);
yy = 1./(1+exp(-b(1)-b(2)*(xx/1000)));
plot(xx,yy);
xlabel('Distance');
ylabel('Prob[Delay>20]')

11 Large Data

11-84

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

 See Also

11-85

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce
This example shows how to compute a tall skinny QR (TSQR) factorization using
mapreduce. It demonstrates how to chain mapreduce calls to perform multiple
iterations of factorizations, and uses the info argument of the map function to compute
numeric keys.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival
and departure times. In this example, the variables of interest are ArrDelay (flight
arrival delay), DepDelay (flight departure delay) and Distance (total flight distance).

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.ReadSize = 1000;
ds.SelectedVariableNames = {'ArrDelay', 'DepDelay', 'Distance'};

The datastore treats 'NA' values as missing and replaces the missing values with NaN
values by default. The ReadSize property lets you specify how to partition the data into
chunks. Additionally, the SelectedVariableNames property allows you to work with
only the specified variables of interest, which you can verify using preview.

preview(ds)

ans =

 8x3 table

 ArrDelay DepDelay Distance
 ________ ________ ________

 8 12 308
 8 1 296
 21 20 480
 13 12 296
 4 -1 373
 59 63 308
 3 -2 447
 11 -1 954

11 Large Data

11-86

Chain MapReduce Calls

The implementation of the multi-iteration TSQR algorithm needs to chain consecutive
mapreduce calls. To demonstrate the general chaining design pattern, this example uses
two mapreduce iterations. The output from the map function calls is passed into a large
set of reducers, and then the output of these reducers becomes the input for the next
mapreduce iteration.

First MapReduce Iteration

In the first iteration, the map function, tsqrMapper, receives one chunk (the ith) of data,
which is a table of size . The mapper computes the matrix of this chunk of data
and stores it as an intermediate result. Then, mapreduce aggregates the intermediate
results by unique key before sending them to the reduce function. Thus, mapreduce
sends all intermediate matrices with the same key to the same reducer.

Since the reducer uses qr, which is an in-memory MATLAB function, it's best to first
make sure that the matrices fit in memory. This example divides the dataset into eight
partitions. The mapreduce function reads the data in chunks and passes the data along
with some meta information to the map function. The info input argument is the second
input to the map function and it contains the read offset and file size information that
are necessary to generate the key,

 key = ceil(offset/fileSize/numPartitions).

Display the map function file.

function tsqrMapper(data, info, intermKVStore)
% Mapper function for the TSQRMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

x = data{:,:};
x(any(isnan(x),2),:) = [];% Remove missing values

[~, r] = qr(x,0);

% intermKey = randi(4); % random integer key for partitioning intermediate results
intermKey = computeKey(info, 8);
add(intermKVStore,intermKey, r);

 Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

11-87

function key = computeKey(info, numPartitions)
% Helper function to generate a key for the tsqrMapper function.

fileSize = info.FileSize; % total size of the underlying data file
partitionSize = fileSize/numPartitions; % size in bytes of each partition
offset = info.Offset; % offset in bytes of the current read

key = ceil(offset/partitionSize);

The reduce function receives a list of the intermediate matrices, vertically
concatenates them, and computes the matrix of the concatenated matrix.

Display the reduce function file.

function tsqrReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the TSQRMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

x = [];

while (intermValIter.hasnext)
 x = [x;intermValIter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Consider increasing the number of reduce tasks (increasing the
% number of partitions in the tsqrMapper) and adding more iterations if it
% does not fit in memory.

[~, r] =qr(x,0);

outKVStore.add(intermKey,r);

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outds1 = mapreduce(ds, @tsqrMapper, @tsqrReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 10% Reduce 0%

11 Large Data

11-88

Map 20% Reduce 0%
Map 30% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%
Map 60% Reduce 0%
Map 70% Reduce 0%
Map 80% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 11%
Map 100% Reduce 22%
Map 100% Reduce 33%
Map 100% Reduce 44%
Map 100% Reduce 56%
Map 100% Reduce 67%
Map 100% Reduce 78%
Map 100% Reduce 89%
Map 100% Reduce 100%

mapreduce returns an output datastore, outds1, with files in the current folder.

Second MapReduce Iteration

The second iteration uses the output of the first iteration, outds1, as its input. This
iteration uses an identity mapper, identityMapper, which simply copies over the data
using a single key, 'Identity'.

Display the identity mapper file.

function identityMapper(data, info, intermKVStore)
% Mapper function for the MapReduce TSQR example.
%
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.

% Copyright 2014 The MathWorks, Inc.

x = data.Value{:,:};
add(intermKVStore,'Identity', x);

 Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

11-89

The reducer function is the same in both iterations. The use of a single key by the map
function means that mapreduce only calls the reduce function once in the second
iteration.

Display the reduce function file.

function tsqrReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the TSQRMapReduceExample.

% Copyright 2014 The MathWorks, Inc.

x = [];

while (intermValIter.hasnext)
 x = [x;intermValIter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Consider increasing the number of reduce tasks (increasing the
% number of partitions in the tsqrMapper) and adding more iterations if it
% does not fit in memory.

[~, r] =qr(x,0);

outKVStore.add(intermKey,r);

Use mapreduce to apply the identity mapper and the same reducer to the output from
the first mapreduce call.

outds2 = mapreduce(outds1, @identityMapper, @tsqrReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 12% Reduce 0%
Map 25% Reduce 0%
Map 37% Reduce 0%
Map 50% Reduce 0%
Map 62% Reduce 0%
Map 75% Reduce 0%
Map 87% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

11 Large Data

11-90

View Results

Read the final results from the output datastore.

r = readall(outds2);
r.Value{:}

ans =

 1.0e+05 *

 0.1091 0.0893 0.5564
 0 -0.0478 -0.4890
 0 0 3.0130

Reference

1 Paul G. Constantine and David F. Gleich. 2011. Tall and skinny QR factorizations in
MapReduce architectures. In Proceedings of the Second International Workshop on
MapReduce and Its Applications (MapReduce '11). ACM, New York, NY, USA, 43-50.
DOI=10.1145/1996092.1996103 http://doi.acm.org/10.1145/1996092.1996103

See Also
datastore | mapreduce

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24

 See Also

11-91

http://doi.acm.org/10.1145/1996092.1996103

Compute Maximum Average HSV of Images with MapReduce
This example shows how to use ImageDatastore and mapreduce to find images with
maximum hue, saturation and brightness values in an image collection.

Prepare Data

Create a datastore using the images in toolbox/matlab/demos and toolbox/
matlab/imagesci. The selected images have the extensions .jpg, .tif and .png.

demoFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'demos');
imsciFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'imagesci');

Create a datastore using the folder paths, and filter which images are included in the
datastore using the FileExtensions Name-Value pair.

ds = imageDatastore({demoFolder, imsciFolder}, ...
 'FileExtensions', {'.jpg', '.tif', '.png'});

Find Average Maximum HSV from All Images

One way to find the maximum average hue, saturation, and brightness values in the
collection of images is to use readimage within a for-loop, processing the images one at a
time. For an example of this method, see “Read and Analyze Image Files” on page 11-
112.

This example uses mapreduce to accomplish the same task, however, the mapreduce
method is highly scalable to larger collections of images. While the for-loop method is
reasonable for small collections of images, it does not scale well to a large collection of
images.

Scale to MapReduce

• The mapreduce function requires a map function and a reduce function as inputs.
• The map function receives chunks of data and outputs intermediate results.
• The reduce function reads the intermediate results and produces a final result.

Map function

• In this example, the map function stores the image data and the average HSV values
as intermediate values.

11 Large Data

11-92

• The intermediate values are associated with 3 keys, 'Average Hue', 'Average
Saturation' and 'Average Brightness'.

function hueSaturationValueMapper(data, info, intermKVStore)
% Map function for the Hue Saturation Value MapReduce example.

% Copyright 1984-2015 The MathWorks, Inc.
 if ~ismatrix(data)
 hsv = rgb2hsv(data);

 % Extract Hue values
 h = hsv(:,:,1);

 % Extract Saturation values
 s = hsv(:,:,2);

 % Extract Brightness values
 v = hsv(:,:,3);

 % Find average of HSV values
 avgH = mean(h(:));
 avgS = mean(s(:));
 avgV = mean(v(:));

 % Add intermediate key-value pairs
 add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));
 add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename, 'Avg', avgS));
 add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename, 'Avg', avgV));
 end
end

Reduce function

• The reduce function receives a list of the image file names along with the respective
average HSV values and finds the overall maximum values of average hue, saturation
and brightness values.

• mapreduce only calls this reduce function 3 times, since the map function only adds
three unique keys.

• The reducefunction uses add to add a final key-value pair to the output. For example,
'Maximum Average Hue' is the key and the respective file name is the value.

 Compute Maximum Average HSV of Images with MapReduce

11-93

function hueSaturationValueReducer(key, intermValIter, outKVSTore)
% Reduce function for the Hue Saturation Value MapReduce example.

% Copyright 1984-2015 The MathWorks, Inc.

 maxAvg = 0;
 maxImageFilename = '';

 % Loop over values for each key
 while hasnext(intermValIter)
 value = getnext(intermValIter);

 % Compare values to determine maximum
 if value.Avg > maxAvg
 maxAvg = value.Avg;
 maxImageFilename = value.Filename;
 end

 end

 % Add final key-value pair
 add(outKVSTore, ['Maximum ' key], maxImageFilename);
end

Run MapReduce

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxHSV = mapreduce(ds, @hueSaturationValueMapper, @hueSaturationValueReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 12% Reduce 0%
Map 25% Reduce 0%
Map 37% Reduce 0%
Map 50% Reduce 0%
Map 62% Reduce 0%
Map 75% Reduce 0%
Map 87% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 33%

11 Large Data

11-94

Map 100% Reduce 67%
Map 100% Reduce 100%

mapreduce returns a datastore, maxHSV, with files in the current folder.

Read and display the final result from the output datastore, maxHSV. Use find and
strcmp to find the file index from the Files property.

tbl = readall(maxHSV);
for i = 1:height(tbl)
 figure;
 idx = find(strcmp(ds.Files, tbl.Value{i}));
 imshow(readimage(ds, idx), 'InitialMagnification', 'fit');
 title(tbl.Key{i});
end

 Compute Maximum Average HSV of Images with MapReduce

11-95

11 Large Data

11-96

 Compute Maximum Average HSV of Images with MapReduce

11-97

See Also
datastore | imageDatastore | mapreduce | tall

More About
• “Getting Started with MapReduce” on page 11-3
• “Build Effective Algorithms with MapReduce” on page 11-24
• “Tall Arrays” on page 11-141
• “Getting Started with Datastore” on page 11-99

11 Large Data

11-98

Getting Started with Datastore

In this section...
“What Is a Datastore?” on page 11-99
“Create and Read from a Datastore” on page 11-100

What Is a Datastore?

A datastore is an object for reading a single file or a collection of files or data. The
datastore acts as a repository for data that has the same structure and formatting. For
example, each file in a datastore must contain data of the same type (such as numeric or
text) appearing in the same order, and separated by the same delimiter.

A datastore is useful when:

• Each file in the collection might be too large to fit in memory. A datastore allows you
to read and analyze data from each file in smaller portions that do fit in memory.

• Files in the collection have arbitrary names. A datastore acts as a repository for files
in one or more folders. The files are not required to have sequential names.

 Getting Started with Datastore

11-99

You can create a datastore for the types of data in this table. Each type of data is
supported by a different type of datastore. The different types of datastores contain
properties pertinent to the type of data that they support.
Type of File or Data Datastore Type
Text files containing column-oriented data,
including CSV files.

TabularTextDatastore

Image files, including formats that are
supported by imread such as JPEG and PNG.

ImageDatastore

Spreadsheet files with a supported Excel format
such as .xlsx.

SpreadsheetDatastore

Key-value pair data that are inputs to or outputs
of mapreduce.

KeyValueDatastore

Custom file formats. Requires a provided
function for reading data.

FileDatastore

Collections of data in a relational database.
Requires Database Toolbox.

DatabaseDatastore

Simulation input and output data that you use
with a Simulink model.

SimulationDatastore

Datastore for collection of MDF files, for Vehicle
Network Toolbox™.

MDFDatastore

Datastore for collection of MDF files, for
Powertrain Blockset™.

MDFDatastore

Create and Read from a Datastore
Use the tabularTextDatastore function to create a datastore from the sample file
airlinesmall.csv, which contains departure and arrival information about individual
airline flights. The result is a TabularTextDatastore object.

ds = tabularTextDatastore('airlinesmall.csv')

ds =

 TabularTextDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'

11 Large Data

11-100

 }
 FileEncoding: 'UTF-8'
 ReadVariableNames: true
 VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}

 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ','
 RowDelimiter: '\r\n'
 TreatAsMissing: ''
 MissingValue: NaN

 Advanced Text Format Properties:
 TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
 ExponentCharacters: 'eEdD'
 CommentStyle: ''
 Whitespace: ' \b\t'
 MultipleDelimitersAsOne: false

 Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
 SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
 ReadSize: 20000 rows

After creating the datastore, you can preview the data without having to load it all into
memory. You can specify variables (columns) of interest using the
SelectedVariableNames property to preview or read only those variables.

 Getting Started with Datastore

11-101

ds.SelectedVariableNames = {'DepTime','DepDelay'};
preview(ds)

ans =
 DepTime DepDelay
 _______ ________
 642 12
 1021 1
 2055 20
 1332 12
 629 -1
 1446 63
 928 -2
 859 -1

You can specify the values in your data which represent missing values. In
airlinesmall.csv, missing values are represented by NA.

ds.TreatAsMissing = 'NA';

If all of the data in the datastore for the variables of interest fit in memory, you can read
it using the readall function.

T = readall(ds);

Otherwise, read the data in smaller subsets that do fit in memory, using the read
function. By default, the read function reads from a TabularTextDatastore 20000
rows at a time. However, you can change this value by assigning a new value to the
ReadSize property.

ds.ReadSize = 15000;

Reset the datastore to the initial state before re-reading, using the reset function. By
calling the read function within a while loop, you can perform intermediate calculations
on each subset of data, and then aggregate the intermediate results at the end. This code
calculates the maximum value of the DepDelay variable.

reset(ds)
X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X)

11 Large Data

11-102

maxDelay =
 1438

If the data in each individual file fits in memory, you can specify that each call to read
should read one complete file rather than a specific number of rows.

reset(ds)
ds.ReadSize = 'file';
X = [];
while hasdata(ds)
 T = read(ds);
 X(end+1) = max(T.DepDelay);
end
maxDelay = max(X);

In addition to reading subsets of data in a datastore, you can apply map and reduce
functions to the datastore using mapreduce. For more information about MapReduce in
MATLAB, see “Getting Started with MapReduce” on page 11-3.

See Also
FileDatastore | ImageDatastore | KeyValueDatastore |
SpreadsheetDatastore | TabularTextDatastore | datastore | mapreduce |
tabularTextDatastore | tall

Related Examples
• “Read and Analyze Large Tabular Text File” on page 11-109
• “Read and Analyze Image Files” on page 11-112
• “Read and Analyze MAT-File with Key-Value Data” on page 11-117
• “Tall Arrays” on page 11-141

 See Also

11-103

Read Remote Data
In MATLAB you can access remote data using datastore objects. You can create a
datastore to work with data stored in remote locations, such as cloud storage using
Amazon S3 (Simple Storage Service), Windows Azure Blob Storage, and Hadoop
Distributed File System (HDFS). Use the datastore to examine part of your data from
your desktop version of MATLAB. Then, after prototyping your code locally, you can scale
up to a cluster or cloud. Scaling up improves execution efficiency as it is more efficient to
run large calculations in the same location as the data.

Amazon S3
MATLAB enables you to use Amazon S3 as an online file storage web service offered by
Amazon Web Services. You can use data stored on Amazon S3 to create an
ImageDatastore, FileDatastore, or TabularTextDatastore. When you specify the
location of the data, you must specify the full path to the files or folders using an
internationalized resource identifier (IRI) of the form
s3://bucketname/path_to_file

bucketname is the name of the container and path_to_file is the path to the file or
folders.

Amazon S3 provides data storage through web services interfaces. You can use a bucket
as a container to store objects in Amazon S3. See Introduction to Amazon S3 for more
information.

To use an Amazon S3 datastore, follow these steps:

1 Sign up for an Amazon Web Services (AWS) root account. See Amazon Web Services:
Account.

2 Using your AWS root account, create an IAM (Identity and Access Management)
user. See Creating an IAM User in Your AWS Account.

3 Generate an access key to receive an access key ID and a secret access key. See
Managing Access Keys for IAM Users.

4 Set your environment variables using setenv:

• AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY — Authenticate and
enable use of Amazon S3 services. (You generated this pair of access key
variables in step 3.)

11 Large Data

11-104

https://aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
https://aws.amazon.com/account/
https://aws.amazon.com/account/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

• AWS_REGION — Select the geographic region of your bucket. This variable
overrides the default region of the in-use profile, if set.

For example, create an ImageDatastore, read a specified image from the datastore, and
then display the image to screen.

setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCESS_KEY', 'YOUR_AWS_SECRET_ACCESS_KEY');
setenv('AWS_REGION', 'us-east-1');

ds = imageDatastore('s3://mw-s3-datastore-tests-us/image_datastore/jpegfiles', ...
 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
img = ds.readimage(1);
imshow(img)

Windows Azure Blob Storage

MATLAB enables you to use Windows Azure Blob Storage (WABS) as an online file
storage web service offered by Microsoft. You can use data stored on Windows Azure to
create an ImageDatastore, FileDatastore, or TabularTextDatastore. When you
specify the location of the data, you must specify the full path to the files or folders using
an internationalized resource identifier (IRI) of the form

wasbs://container@account/path_to_file/file.ext

container@account is the name of the container and path_to_file is the path to the
file or folders.

Windows Azure provides data storage through web services interfaces. You can use a
blob as a container to store objects in Windows Azure. See Introduction to Windows
Azure for more information.

To use a Windows Azure datastore, follow these steps:

1 Sign up for a Microsoft Azure account, see Microsoft Azure Account.
2 Set up your authentication details by setting exactly one of the two following

environment variables using setenv:

• MW_WASB_SAS_TOKEN — Authentication via Shared Access Signature (SAS)

Obtain an SAS. For details, see the "Get the SAS for a blob container" section in
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs.

 Read Remote Data

11-105

https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/fundamentals-introduction-to-azure
https://docs.microsoft.com/en-us/azure/fundamentals-introduction-to-azure
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs

In MATLAB, set MW_WASB_SAS_TOKEN to the SAS query string. For example,

setenv MW_WASB_SAS_TOKEN '?st=2017-04-11T09%3A45%3A00Z&se=2017-05-12T09%3A45%3A00Z&sp=rl&sv=2015-12-11&sr=c&sig=E12eH4cRCLilp3Tw%2BArdYYR8RruMW45WBXhWpMzSRCE%3D'

You must set this string to a valid SAS token generated from the Azure Storage
web UI or Explorer.

• MW_WASB_SECRET_KEY — Authentication via one of the Account's two secret keys

Each Storage Account has two secret keys that permit administrative privilege
access. This same access can be given to MATLAB without having to create an
SAS token by setting the MW_WASB_ACCOUNT_KEY environment variable. For
example:

setenv MW_WASB_ACCOUNT_KEY '1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF'
3 Create a datastore from a Windows Azure Storage Blob (WASB) location

To produce the file location, start with the filename file.ext, and prefix it with the
file path /path_to_file and your account name wasbs://container@account/.
The complete data location uses the following syntax:

wasbs://container@account/path_to_file/file.ext

container@account is the name of the container and path_to_file is the path to
the file or folders.

For example, if you have a file airlinesmall.csv in a folder /airline on a test
storage account wasbs://
blobContainer@storageAccount.blob.core.windows.net/, then you can
create a datastore by using:

location = 'wasbs://blobContainer@storageAccount.blob.core.windows.net/airline/airlinesmall.csv';

ds = tabularTextDatastore(location, 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', {'ArrDelay'});

You can use Azure for all calculations datastore supports, including direct reading,
mapreduce, tall arrays and deep learning. For example, create an ImageDatastore,
read a specified image from the datastore, and then display the image to screen.

setenv('MW_WASB_SAS_TOKEN', 'YOUR_WASB_SAS_TOKEN');
ds = imageDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/', ...
 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

11 Large Data

11-106

img = ds.readimage(1);
imshow(img)

If you are using Parallel Computing Toolbox, you must copy your client environment
variables to the workers on a cluster by setting EnvironmentVariables in parpool,
batch, createJob or in the Cluster Profile Manager.

For more information, see https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-
hadoop-use-blob-storage.

HDFS

Specify Location of Data

You also can create a datastore for a collection of text files or sequence files that reside on
the Hadoop Distributed File System (HDFS) using the datastore function. When you
specify the location of the data, you must specify the full path to the files or folders using
an internationalized resource identifier (IRI) of one of these forms:

hdfs:/path_to_file

hdfs:///path_to_file

hdfs://hostname/path_to_file

hostname is the name of the host or server and path_to_file is the path to the file or
folders. Specifying the hostname is optional. When you do not specify the hostname,
Hadoop uses the default host name associated with the Hadoop Distributed File System
(HDFS) installation in MATLAB.

For example, both these commands create a datastore for the file, file1.txt, in a folder
named data located at a host named myserver:

• ds = datastore('hdfs:///data/file1.txt')
• ds = datastore('hdfs://myserver/data/file1.txt')

If hostname is specified, it must correspond to the namenode defined by the
fs.default.name property in the Hadoop XML configuration files for your Hadoop
cluster.

 Read Remote Data

11-107

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage

Optionally, you can include the port number. For example, this location specifies a host
named myserver with port 7867, containing the file file1.txt in a folder named
data:

'hdfs://myserver:7867/data/file1.txt'

The specified port number must match the port number set in your HDFS configuration.

Set Hadoop Environment Variable

Before reading from HDFS, use the setenv function to set the appropriate environment
variable to the folder where Hadoop is installed. This folder must be accessible from the
current machine.

• Hadoop v1 only — Set the HADOOP_HOME environment variable.
• Hadoop v2 only — Set the HADOOP_PREFIX environment variable.
• If you work with both Hadoop v1 and Hadoop v2, or if the HADOOP_HOME and

HADOOP_PREFIX environment variables are not set, then set the
MATLAB_HADOOP_INSTALL environment variable.

For example, use this command to set the HADOOP_HOME environment variable. hadoop-
folder is the folder where Hadoop is installed, and /mypath/ is the path to that folder.

setenv('HADOOP_HOME','/mypath/hadoop-folder');

Prevent Clearing Code from Memory

When reading from HDFS or when reading Sequence files locally, the datastore
function calls the javaaddpath command. This command does the following:

• Clears the definitions of all Java classes defined by files on the dynamic class path
• Removes all global variables and variables from the base workspace
• Removes all compiled scripts, functions, and MEX-functions from memory

To prevent persistent variables, code files, or MEX-files from being cleared, use the
mlock function.

See Also
datastore | imageDatastore | imread | imshow | javaaddpath | mlock | setenv

11 Large Data

11-108

Read and Analyze Large Tabular Text File
This example shows how to create a datastore for a large text file containing tabular
data, and then read and process the data one chunk at a time or one file at a time.

Create a Datastore

Create a datastore from the sample file airlinesmall.csv using the datastore
function. When you create the datastore, you can specify that the text, NA, in the data is
treated as missing data.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA');

datastore returns a TabularTextDatastore. The datastore function automatically
determines the appropriate type of datastore to create based on the file extension.

You can modify the properties of the datastore by changing its properties. Modify the
MissingValue property to specify that missing values are treated as 0.

ds.MissingValue = 0;

In this example, select the variable for the arrival delay, ArrDelay, as the variable of
interest.

ds.SelectedVariableNames = 'ArrDelay';

Preview the data using the preview function. This function does not affect the state of
the datastore.

data = preview(ds)

data=8x1 table null
 ArrDelay

 8
 8
 21
 13
 4
 59
 3
 11

 Read and Analyze Large Tabular Text File

11-109

Read Subsets of Data

By default, read reads from a TabularTextDatastore 20000 rows at a time. To read a
different number of rows in each call to read, modify the ReadSize property of ds.

ds.ReadSize = 15000;

Read subsets of the data from ds using the read function in a while loop. The loop
executes until hasdata(ds) returns false.

sums = [];
counts = [];
while hasdata(ds)
 T = read(ds);

 sums(end+1) = sum(T.ArrDelay);
 counts(end+1) = length(T.ArrDelay);
end

Compute the average arrival delay

avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

Reset the datastore to allow rereading of the data.

reset(ds)

Read One File at a Time

A datastore can contain multiple files, each with a different number of rows. You can
read from the datastore one complete file at a time by setting the ReadSize property to
'file'.

ds.ReadSize = 'file';

When you change the value of ReadSize from a number to 'file' or vice versa,
MATLAB resets the datastore.

Read from ds using the read function in a while loop, as before, and compute the
average arrival delay.

sums = [];
counts = [];

11 Large Data

11-110

while hasdata(ds)
 T = read(ds);

 sums(end+1) = sum(T.ArrDelay);
 counts(end+1) = length(T.ArrDelay);
end
avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

See Also
TabularTextDatastore | datastore | mapreduce | tabularTextDatastore |
tall

Related Examples
• “Tall Arrays” on page 11-141
• “Getting Started with MapReduce” on page 11-3

 See Also

11-111

Read and Analyze Image Files
This example shows how to create a datastore for a collection of images, read the image
files, and find the images with the maximum average hue, saturation, and brightness
(HSV). For a similar example on image processing using the mapreduce function, see
“Compute Maximum Average HSV of Images with MapReduce” on page 11-92.

Identify two MATLAB® directories and create a datastore containing images
with .jpg, .tif, and .png extensions in those directories.

location1 = fullfile(matlabroot,'toolbox','matlab','demos');
location2 = fullfile(matlabroot,'toolbox','matlab','imagesci');

ds = datastore({location1,location2},'Type','image',...
 'FileExtensions',{'.jpg','.tif','.png'});

Initialize the maximum average HSV values and the corresponding image data.

maxAvgH = 0;
maxAvgS = 0;
maxAvgV = 0;

dataH = 0;
dataS = 0;
dataV = 0;

For each image in the collection, read the image file and calculate the average HSV
values across all of the image pixels. If an average value is larger than that of a previous
image, then record it as the new maximum (maxAvgH, maxAvgS, or maxAvgV) and record
the corresponding image data (dataH, dataS, or dataV).

for i = 1:length(ds.Files)
 data = readimage(ds,i); % Read the ith image
 if ~ismatrix(data) % Only process 3-dimensional color data
 hsv = rgb2hsv(data); % Compute the HSV values from the RGB data

 h = hsv(:,:,1); % Extract the HSV values
 s = hsv(:,:,2);
 v = hsv(:,:,3);

 avgH = mean(h(:)); % Find the average HSV values across the image
 avgS = mean(s(:));
 avgV = mean(v(:));

11 Large Data

11-112

 if avgH > maxAvgH % Check for new maximum average hue
 maxAvgH = avgH;
 dataH = data;
 end

 if avgS > maxAvgS % Check for new maximum average saturation
 maxAvgS = avgS;
 dataS = data;
 end

 if avgV > maxAvgV % Check for new maximum average brightness
 maxAvgV = avgV;
 dataV = data;
 end
 end
end

View the images with the largest average hue, saturation, and brightness.

imshow(dataH,'InitialMagnification','fit');
title('Maximum Average Hue')

 Read and Analyze Image Files

11-113

figure
imshow(dataS,'InitialMagnification','fit');
title('Maximum Average Saturation');

11 Large Data

11-114

figure
imshow(dataV,'InitialMagnification','fit');
title('Maximum Average Brightness');

 Read and Analyze Image Files

11-115

See Also
ImageDatastore | datastore | imageDatastore | mapreduce | tall

Related Examples
• “Tall Arrays” on page 11-141
• “Getting Started with MapReduce” on page 11-3
• “Compute Maximum Average HSV of Images with MapReduce” on page 11-92

11 Large Data

11-116

Read and Analyze MAT-File with Key-Value Data
This example shows how to create a datastore for key-value pair data in a MAT-file that
is the output of mapreduce. Then, the example shows how to read all the data in the
datastore and sort it. This example assumes that the data in the MAT-file fits in
memory.

Create a datastore from the sample file, mapredout.mat, using the datastore
function. The sample file contains unique keys representing airline carrier codes and
corresponding values that represent the number of flights operated by that carrier.

ds = datastore('mapredout.mat');

datastore returns a KeyValueDatastore. The datastore function automatically
determines the appropriate type of datastore to create.

Preview the data using the preview function. This function does not affect the state of
the datastore.

preview(ds)

ans=1x2 table
 Key Value
 ____ _______

 'AA' [14930]

Read all of the data in ds using the readall function. The readall function returns a
table with two columns, Key and Value.

T = readall(ds)

T=29x2 table
 Key Value
 ________ _______

 'AA' [14930]
 'AS' [2910]
 'CO' [8138]
 'DL' [16578]
 'EA' [920]
 'HP' [3660]

 Read and Analyze MAT-File with Key-Value Data

11-117

 'ML (1)' [69]
 'NW' [10349]
 'PA (1)' [318]
 'PI' [871]
 'PS' [83]
 'TW' [3805]
 'UA' [13286]
 'US' [13997]
 'WN' [15931]
 'AQ' [154]

T contains all the airline and flight data from the datastore in the same order in which
the data was read. The table variables, Key and Value, are cell arrays.

Convert Value to a numeric array.

T.Value = cell2mat(T.Value)

T=29x2 table
 Key Value
 ________ _____

 'AA' 14930
 'AS' 2910
 'CO' 8138
 'DL' 16578
 'EA' 920
 'HP' 3660
 'ML (1)' 69
 'NW' 10349
 'PA (1)' 318
 'PI' 871
 'PS' 83
 'TW' 3805
 'UA' 13286
 'US' 13997
 'WN' 15931
 'AQ' 154

Assign new names to the table variables.

T.Properties.VariableNames = {'Airline','NumFlights'};

11 Large Data

11-118

Sort the data in T by the number of flights.

T = sortrows(T,'NumFlights','descend')

T=29x2 table
 Airline NumFlights
 _______ __________

 'DL' 16578
 'WN' 15931
 'AA' 14930
 'US' 13997
 'UA' 13286
 'NW' 10349
 'CO' 8138
 'MQ' 3962
 'TW' 3805
 'HP' 3660
 'OO' 3090
 'AS' 2910
 'XE' 2357
 'EV' 1699
 'OH' 1457
 'FL' 1263

View a summary of the sorted table.

summary(T)

Variables:

 Airline: 29x1 cell array of character vectors

 NumFlights: 29x1 double

 Values:

 Min 69
 Median 1457
 Max 16578

Reset the datastore to allow rereading of the data.

reset(ds)

 Read and Analyze MAT-File with Key-Value Data

11-119

See Also
KeyValueDatastore | datastore | mapreduce | tall

Related Examples
• “Tall Arrays” on page 11-141
• “Getting Started with MapReduce” on page 11-3

11 Large Data

11-120

Read and Analyze Hadoop Sequence File
This example shows how to create a datastore for a Sequence file containing key-value
data. Then, you can read and process the data one chunk at a time. Sequence files are
outputs of mapreduce operations that use Hadoop.

Set the appropriate environment variable to the location where Hadoop is installed. In
this case, set the MATLAB_HADOOP_INSTALL environment variable.

setenv('MATLAB_HADOOP_INSTALL','/mypath/hadoop-folder')

hadoop-folder is the folder where Hadoop is installed and mypath is the path to that
folder.

Create a datastore from the sample file, mapredout.seq, using the datastore
function. The sample file contains unique keys representing airline carrier codes and
corresponding values that represent the number of flights operated by that carrier.

ds = datastore('mapredout.seq')

ds =
 KeyValueDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\matlab\demos\mapredout.seq'
 }
 ReadSize: 1 key-value pairs
 FileType: 'seq'

datastore returns a KeyValueDatastore. The datastore function automatically
determines the appropriate type of datastore to create.

Set the ReadSize property to six so that each call to read reads at most six key-value
pairs.

ds.ReadSize = 6;

Read subsets of the data from ds using the read function in a while loop. For each
subset of data, compute the sum of the values. Store the sum for each subset in an array
named sums. The while loop executes until hasdata(ds) returns false.

sums = [];
while hasdata(ds)

 Read and Analyze Hadoop Sequence File

11-121

 T = read(ds);
 T.Value = cell2mat(T.Value);
 sums(end+1) = sum(T.Value);
end

View the last subset of key-value pairs read.

T

T =

 Key Value
 ________ _____

 'WN' 15931
 'XE' 2357
 'YV' 849
 'ML (1)' 69
 'PA (1)' 318

Compute the total number of flights operated by all carriers.

numflights = sum(sums)

numflights =

 123523

See Also
KeyValueDatastore | datastore | mapreduce | tall

Related Examples
• “Getting Started with MapReduce” on page 11-3
• “Tall Arrays” on page 11-141

11 Large Data

11-122

Develop Custom Datastore
Build your own datastore for custom or proprietary data using the custom datastore
framework. Use this framework only when writing your own custom datastore interface.
Otherwise, for standard file formats such as images or spreadsheets, use an existing
datastore from MATLAB. For information on existing datastores, see “Getting Started
with Datastore” on page 11-99. The following example shows how to implement a custom
datastore for file-based data.

Overview

Build your custom datastore interface using the custom datastore classes and objects.
Then, use the custom datastore to bring your data into MATLAB and leverage the
MATLAB big data capabilities such as tall, MapReduce, and Hadoop.

Designing your custom datastore involves inheriting from one or more abstract classes
and implementing the required methods. The specific classes and methods you need
depend on your processing needs.
Processing Needs Classes
Datastore for Serial Processing in
MATLAB

matlab.io.Datastore

See, “Implement Datastore for Serial
Processing” on page 11-124

Datastore with support for Parallel
Computing Toolbox and MATLAB
Distributed Computing Server

matlab.io.Datastore and
matlab.io.datastore.Partitionable

See, “Add Support for Parallel Processing”
on page 11-126

Datastore with support for Hadoop matlab.io.Datastore and
matlab.io.datastore.HadoopFileBas
ed

See, “Add Support for Hadoop” on page 11-
127

Start by implementing datastore for serial processing, and then add support for parallel
processing and Hadoop.

 Develop Custom Datastore

11-123

Implement Datastore for Serial Processing

To implement a custom datastore named MyDatastore, create a script MyDatastore.m.
The script must be on the MATLAB path and should contain code that inherits from the
appropriate class and defines the required methods. The code for creating a datastore for
serial processing in MATLAB must:

• Inherit from the base class matlab.io.Datastore
• Define these methods: hasdata, read, reset, and progress

For a sample implmentation, follow these steps.
Steps Implementation
Inherit from the base
class Datastore

classdef MyDatastore < matlab.io.Datastore

 properties(Access = private)
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 end

Implement the
required methods

 methods % begin methods section

Implement the
function MyDatastore
that creates the
custom datastore

 function myds = MyDatastore(location)
 myds.FileSet = matlab.io.datastore.DsFileSet(location,...
 'FileExtensions','.csv', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;
 reset(myds);
 end

Implement the
hasdata method

 function tf = hasdata(myds)
 % Return true if more data is available.
 tf = hasfile(myds.FileSet);
 end

11 Large Data

11-124

Steps Implementation
Implement the read
method

This method uses
MyFileReader, which
is a function that you
must create to read
your proprietary file
format

See “Create Function
to Read Your
Proprietary File
Format” on page 11-
126

 function [data,info] = read(myds)
 % Read data and information about the extracted data.
 if ~hasdata(myds)
 error('No more data');
 end

 fileInfoTbl = nextfile(myds.FileSet);
 data = MyFileReader(fileInfoTbl);
 info.Size = size(data);
 info.FileName = fileInfoTbl.FileName;
 info.Offset = fileInfoTbl.Offset;

 % Update CurrentFileIndex for tracking progress
 if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
 fileInfoTbl.FileSize
 myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
 end

 end

Implement the reset
method

 function reset(myds)
 % Reset to the start of the data.
 reset(myds.FileSet);
 myds.CurrentFileIndex = 1;
 end

Implement the
progress method

 function frac = progress(myds)
 % Determine percentage of data that you have read
 % from a datastore
 frac = (myds.CurrentFileIndex-1)/myds.Location.NumFiles;
 end

End the required
methods section

end

 Develop Custom Datastore

11-125

Steps Implementation
If you use the
DsFileSet object as a
property in your
datastore, then you
must also implement
the copyElement
method

 methods(Access = protected)
 % If you use the DsFileSet object as a property,
 % then you must define the copyElement method. The
 % copyElement method allows the methods such as readall
 % and preview to remain stateless
 function dscopy = copyElement(ds)
 dscopy = copyElement@matlab.mixin.Copyable(ds);
 dscopy.FileSet = copy(ds.FileSet);
 end
 end

End the classdef
section

end

Create Function to Read Your Proprietary File Format

The implementation of the read method of your custom datastore uses a function called
MyFileReader. You must create this function to read your custom or proprietary data.
Build this function using DsFileReader object and its methods. For example, create a
function that reads binary files.

function data = MyFileReader(fileInfoTbl)
% create a reader object using the FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');

% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);
end

Add Support for Parallel Processing

To add support for parallel processing with Parallel Computing Toolbox and MATLAB
Distributed Computing Server, update your implentation code in MyDatastore.m to:

• Inherit from an additional class matlab.io.datastore.Partitionable
• Define two additional methods: maxpartitions and partition

For a sample implmentation, follow these steps.

11 Large Data

11-126

Steps Implementation
Update the classdef
section to inherit from
the Partitionable
class

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.Partitionable
 .
 .
 .

Add the definition for
partition to the
methods section

 methods
 .
 .
 .
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 end
 end

Add definition for
maxpartitions to the
methods section

 methods (Access = protected)
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end

End classdef end

Add Support for Hadoop

To add support for Hadoop, update your implentation code in MyDatastore.m to:

• Inherit from an additional class matlab.io.datastore.HadoopFileBased
• Define three additional methods: getLocation, initializeDatastore, and

isfullfile

For a sample implmentation, follow these steps.

 Develop Custom Datastore

11-127

Steps Implementation
Update the classdef
section to inherit from
the
HadoopFileBased
class

classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.HadoopFileBased
 .
 .
 .

Add the definition for
getLocation,
initializeDatasto
re, and isfullfile
to the methods section

 methods
 .
 .
 .

 function initializeDatastore(myds,hadoopInfo)
 import matlab.io.datastore.DsFileSet;
 myds.FileSet = DsFileSet(hadoopInfo,...
 'FileSplitSize',myds.FileSet.FileSplitSize);
 reset(myds);
 end

 function loc = getLocation(myds)
 loc = myds.FileSet;
 end

 function tf = isfullfile(myds)
 tf = false;
 end

 end

End the classdef
section

end

Validate Custom Datastore
If you have followed all the instructions presented here, then the implementation step of
your custom datastore is complete. Before using this custom datastore, qualify it using
the guidelines presented in “Testing Guidelines for Custom Datastores” on page 11-130.

See Also
Datastore | DsFileReader | DsFileSet | HadoopFileBased | Partitionable

11 Large Data

11-128

More About
• “Developing Classes — Typical Workflow”
• “Create and Share Toolboxes”
• “Create Help for Classes”
• “Testing Guidelines for Custom Datastores” on page 11-130

 See Also

11-129

Testing Guidelines for Custom Datastores
All datastores that are derived from the custom datastore classes share some common
behaviors. This test procedure provides guidelines to test the minimal set of behaviors
and functionalities that all custom datastores should have. You will need additional tests
to qualify any unique functionalities of your custom datastore.

If you have developed your custom datastore based on instructions in “Develop Custom
Datastore” on page 11-123, then follow these test procedures to qualify your custom
datastore. First perform the unit tests, followed by the workflow tests:

• Unit tests qualify the datastore constructor and methods.
• Workflow tests qualify the datastore usage.

For all these test cases:

• Unless specified in the test description, assume that you are testing a nonempty
datastore ds.

• Verify the test cases on the file extensions, file encodings, and data locations (like
Hadoop) that your custom datastore is designed to support.

Unit Tests

Construction

The unit test guidelines for the datastore constructor are as follows.
Test Case Description Expected Output
Check if your custom datastore constructor works
with the minimal required inputs.

Datastore object of your custom
datastore type with the minimal
expected properties and methods

Check if your datastore object ds has
matlab.io.Datastore as one of its superclasses.

Run this command:

isa(ds,'matlab.io.Datastore')

1 or true

11 Large Data

11-130

Test Case Description Expected Output
Call your custom datastore constructor with the
required inputs and any supported input
arguments and name-value pair arguments.

Datastore object of your custom
datastore type with the minimal
expected properties and methods

read

Unit test guidelines for the read method
Test Case Description Expected Output
Call the read method on a datastore object ds.

t = read(ds);

Data from the beginning of the
datastore

If you specify read size, then the
size of the returned data is
equivalent to read size.

Call the read method again on the datastore object.

t = read(ds);

Data starting from the end point of
the previous read operation

If you specify read size, then the
size of the returned data is
equivalent to read size.

Continue calling the read method on the datastore
object in a while loop.

while(hasdata(ds))
 t = read(ds);
end

No errors

Correct data in the correct format

When data is available to read, check the info
output (if any) of the read method.

Call a datastore object ds.

[t,info] = read(ds);

No error

info contains the expected
information

t contains the expected data
When no more data is available to read, call read
on the datastore object.

Either expected output or an error
message based on your custom
datastore implementation.

 Testing Guidelines for Custom Datastores

11-131

readall

Unit test guidelines for the readall method
Test Case Description Expected Output
Call the readall method on the datastore object. All data
Call the readall method on the datastore object,
when hasdata(ds) is false.

Read from the datastore until hasdata(ds) is
false, and then call the readall method.

while(hasdata(ds))
 t = read(ds);
end

readall(ds)

All data

hasdata

Unit test guidelines for the hasdata method
Test Case Description Expected Output
Call the hasdata method on the datastore object
before making any calls to read

true

Call the hasdata method on the datastore object
after making a few calls to read, but before all the
data is read

true

When more data is available to read, call the
readall method, and then call the hasdata
method.

true

When no more data is available to read, call the
hasdata method.

false

reset

Unit test guidelines for the reset method

11 Large Data

11-132

Test Case Description Expected Output
Call the reset method on the datastore object
before making any calls to the read method.

Verify that the read method returns the
appropriate data after a call to the reset method.

reset(ds);
t = read(ds);

No errors

The read returns data from the
beginning of the datastore.

If you specify read size, then the
size of the returned data is
equivalent to read size.

When more data is available to read, call the reset
method after making a few calls to the read
method.

Verify that the read method returns the
appropriate data after making a call to the reset
method.

No errors

The read method returns data
from the beginning of the
datastore.

If you specify read size, then the
size of the returned data is
equivalent to read size.

When more data is available to read, call the reset
method after making a call to the readall method.

Verify that the read method returns the
appropriate data after making a call to the reset
method.

No errors

The read method returns data
from the beginning of the
datastore.

If you specify read size, then the
size of the returned data is
equivalent to read size.

When no more data is available to read, call the
reset method on the datastore object and then call
the read method

Verify that read returns the appropriate data after
a call to the reset method.

No errors

The read method returns data
from the beginning of the
datastore.

If you specify read size, then the
size of the returned data is
equivalent to read size.

progress

Unit test guidelines for the progress method

 Testing Guidelines for Custom Datastores

11-133

Test Case Description Expected Output
Call the progress method on the datastore object
before making any calls to the read method.

If your datastore is file based, then
progress returns a 0 or returns
an expected output, based on your
custom datastore implementation.

Call the progress method on the datastore object
after making a call to readall, but before making
any calls to read

readall(ds)
progress(ds);

If your datastore is file based, then
progress returns a 0 or returns
an expected output, based on your
custom datastore implementation.

Call the progress method on the datastore object
after making a few calls to read and while more
data is available to read.

If your datastore is file based, then
progress returns a fraction
between 0 and 1 or returns an
expected output, based on your
custom datastore implementation.

Call the progress method on the datastore object
when no more data is available to read.

If your datastore is file based, then
progress returns a 1 or returns
an expected output, based on your
custom datastore implementation.

preview

Unit test guidelines for the preview method
Test Case Description Expected Output
Call preview on the datastore object before
making any calls to read.

The preview method returns the
expected data from the beginning
of the datastore, based on your
custom datastore implementation.

Call preview on the datastore object after making
a few calls to read and while more data is available
to read.

The preview method returns the
expected data from the beginning
of the datastore, based on your
custom datastore implementation.

Call preview on the datastore object after making
a call to readall and while more data is available
to read.

The preview method returns the
expected data from the beginning
of the datastore, based on your
custom datastore implementation.

11 Large Data

11-134

Test Case Description Expected Output
Call preview on the datastore object after making
a few calls to read and a call to reset.

The preview method returns the
expected data from the beginning
of the datastore, based on your
custom datastore implementation.

Call preview on the datastore object when no more
data is available to read.

The preview method returns the
expected data from the beginning
of the datastore, based on your
custom datastore implementation.

Call preview after making a few calls to read
method and then call read again.

The read method returns data
starting from the end point of the
previous read operation.

If you specify read size, then the
size of the returned data is
equivalent to read size.

Call preview, and then call readall on the
datastore.

The readall method returns all
the data from the datastore.

While datastore has data available to read, call
preview, and then call hasdata.

The hasdata method returns
true.

partition

Unit test guidelines for the partition method

 Testing Guidelines for Custom Datastores

11-135

Test Case Description Expected Output
Call partition on the datastore object ds with a
valid number of partitions and a valid partition
index.

Call read on a partition of the datastore and verify
the data.

subds = partition(ds,n,index)
read(subds)

Verify that the partition is valid.

isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))

The partition method partitions
the datastore into n partitions and
returns the partition corresponding
to the specified index.

The returned partition subds must
be a datastore object of your custom
datastore.

The partitioned datastore subds
must have the same methods and
properties as the original
datastore.

The isequal statement returns
true.

Calling read on the partition
returns data starting from the
beginning of the partition.

If you specify read size, then the
size of the returned data is
equivalent to read size.

Call partition on the datastore object ds with
number of partitions specified as 1 and index of
returned partition specified as 1.

Verify the data returned by calling read and
preview on a partition of the partitioned
datastore.

subds = partition(ds,1,1)
isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))
isequaln(read(subds),read(ds))
isequaln(preview(subds),preview(ds))

The partition subds must be a
datastore object of your custom
datastore.

The partition subds must have the
same methods and properties as
the original datastore ds.

The isequal and isequaln
statements returns true.

11 Large Data

11-136

Test Case Description Expected Output
Call partition on the partition subds with a
valid number of partitions and a valid partition
index.

The repartioning of a parition of
the datastore should works error
free.

InitializeDatastore

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify
the behavior of InitializeDatastore using the guidelines in this table.
Test Case Description Expected Output
Call InitializeDatastore on the datastore
object ds with a valid info struct.

The info struct contains these fields:

• FileName
• Offset
• Size

FileName is of data type char and the fields
Offset and Size are of the data type double.

For example, initialize the info struct, and then
call InitializeDatastore on the datastore
object ds.

info = struct('FileName','myFileName.ext',...
 'Offset',0,'Size',500)
initializeDatastore(ds,info)

Verify the initialization by examining the
properties of your datastore object.

ds

The InitializeDatastore
method initializes the custom
datastore object ds with the
necessary information from the
info struct.

getLocation

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify
the behavior of getLocation using these guidelines.

 Testing Guidelines for Custom Datastores

11-137

Test Case Description Expected Output
Call getLocation on the datastore object.

location = getLocation(ds)

Based on your custom datastore implementation,
the location output is either of these:

• List of files or directories
• a matlab.io.datastore.DsFileSet object

If location is a
matlab.io.datastore.DsFileSet object, then
call resolve to verify the files in the location
output.

resolve(location)

The getLocation method returns
the location of files in Hadoop.

isfullfile

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify
the behavior of isfullfile using these guidelines.
Test Case Description Expected Output
Call isfullfile on the datastore object. Based on your custom datastore

implementation, the isfullfile
method returns true or false.

Workflow Tests

Verify your workflow tests in the appropriate environment.

• If your datastore inherts only from matlab.io.Datastore, then verify all workflow
tests in a local MATLAB session.

• If your datastore has parallel processing support (inherits from
matlab.io.datastore.Partitionable), then verify your workflow tests in
parallel execution environments, such as Parallel Computing Toolbox and MATLAB
Distributed Computing Server.

11 Large Data

11-138

• If your datastore is file-based and has Hadoop support (inherits from
matlab.io.datastore.HadoopFileBased), then verify your workflow tests in a
Hadoop cluster.

.

Tall Workflow

Testing guidelines for the tall workflow
Test Case Description Expected Output
Create a tall array by calling tall on the datastore
object ds.

t = tall(ds)

The tall function returns an
output that is the same data type
as the output of the read method of
the datastore.

For this test step, create a datastore object with
data that fits in your system memory. Then, create
a tall array using this datastore object.

t = tall(ds)

If your data is numeric, then apply an appropriate
function like the mean function to both the dsand t,
then compare the results.

If your data is of the data type string or
categorical, then apply the unique function on
a column of ds and a column of t, then compare the
results.

Apply gather and verify the result.

For examples, see “Big Data Workflow Using Tall
Arrays and Datastores” (Parallel Computing
Toolbox).

No errors

The function returns an output of
the correct data type (not of a tall
data type).

The function returns the same
result whether it is applied to ds or
to t.

MapReduce Workflow

Testing guidelines for the MapReduce workflow

 Testing Guidelines for Custom Datastores

11-139

Test Case Description Expected Output
Call mapreduce on the datastore object ds.

outds = mapreduce(ds,@mapper,@reducer)

For more information, see mapreduce.

To support the use of the mapreduce function, the
read method of your custom datastore must return
both the info and the data output arguments.

No error

The MapReduce operation returns
the expected result

Next Steps

Note This test procedure provides guidelines to test the minimal set of behaviors and
functionalities for custom datastores should have. Additional tests are necessary to
qualify any unique functionalities of your custom datastore.

After you complete the implementation and validation of your custom datastore, your
custom datastore is ready to use.

• To add help for your custom datastore implementation, see “Create Help for Classes”.
• To share your custom datastore with other users, see “Create and Share Toolboxes”.

.

See Also
matlab.io.Datastore | matlab.io.datastore.HadoopFileBased |
matlab.io.datastore.Partitionable

More About
• “Develop Custom Datastore” on page 11-123
• “Create and Share Toolboxes”
• “Create Help for Classes”

11 Large Data

11-140

Tall Arrays
Tall arrays are used to work with out-of-memory data that is backed by a datastore.
Datastores enable you to work with large data sets in small chunks that individually fit
in memory, instead of loading the entire data set into memory at once. Tall arrays extend
this capability to enable you to work with out-of-memory data using common functions.

What is a Tall Array?

Since the data is not loaded into memory all at once, tall arrays can be arbitrarily large
in the first dimension (that is, they can have any number of rows). Instead of writing
special code that takes into account the huge size of the data, such as with techniques
like MapReduce, tall arrays let you work with large data sets in an intuitive manner that
is similar to the way you would work with in-memory MATLAB arrays. Many core
operators and functions work the same with tall arrays as they do with in-memory
arrays. MATLAB works with small chunks of the data at a time, handling all of the data
chunking and processing in the background, so that common expressions, such as A+B,
work with big data sets.

Benefits of Tall Arrays

Unlike in-memory arrays, tall arrays typically remain unevaluated until you request
that the calculations be performed using the gather function. This deferred evaluation
allows you to work quickly with large data sets. When you eventually request output
using gather, MATLAB combines the queued calculations where possible and takes the
minimum number of passes through the data. The number of passes through the data
greatly affects execution time, so it is recommended that you request output only when
necessary.

Note Since gather returns results as in-memory MATLAB arrays, standard memory
considerations apply. MATLAB might run out of memory if the result returned by
gather is too large.

Creating Tall Tables

Tall tables are like in-memory MATLAB tables, except that they can have any number of
rows. To create a tall table from a large data set, you first need to create a datastore

 Tall Arrays

11-141

for the data. If the datastore ds contains tabular data, then tall(ds) returns a tall
table containing the data. See “Datastore” for more information about creating
datastores.

Create a spreadsheet datastore that points to a tabular file of airline flight data. For
folders that contain a collection of files, you can specify the entire folder location, or use
the wildcard character, '*.csv', to include multiple files with the same file extension in
the datastore. Clean the data by treating 'NA' values as missing data so that
datastore replaces them with NaN values. Also, set the format of a few text variables to
%s so that datastore reads them as cell arrays of character vectors.

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'CancellationCode')} = '%s';

Create a tall table from the datastore. When you perform calculations on this tall table,
the underlying datastore reads chunks of data and passes them to the tall table to
process. Neither the datastore nor the tall table retain any of the underlying data.

tt = tall(ds)

tt =

 M×29 tall table

 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay
 ____ _____ __________ _________ _______ __________ _______ __________ _____________ _________ _______ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ________ _____________ _________________

 1987 10 21 3 642 630 735 727 'PS' 1503 'NA' 53 57 NaN 8 12 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 26 1 1021 1020 1124 1116 'PS' 1550 'NA' 63 56 NaN 8 1 'SJC' 'BUR' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 2055 2035 2218 2157 'PS' 1589 'NA' 83 82 NaN 21 20 'SAN' 'SMF' 480 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 23 5 1332 1320 1431 1418 'PS' 1655 'NA' 59 58 NaN 13 12 'BUR' 'SJC' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 22 4 629 630 746 742 'PS' 1702 'NA' 77 72 NaN 4 -1 'SMF' 'LAX' 373 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 28 3 1446 1343 1547 1448 'PS' 1729 'NA' 61 65 NaN 59 63 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 8 4 928 930 1052 1049 'PS' 1763 'NA' 84 79 NaN 3 -2 'SAN' 'SFO' 447 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 1987 10 10 6 859 900 1134 1123 'PS' 1800 'NA' 155 143 NaN 11 -1 'SEA' 'LAX' 954 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
 : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

The display indicates that the number of rows, M, is currently unknown. MATLAB
displays some of the rows, and the vertical ellipses : indicate that more rows exist in the
tall table that are not currently being displayed.

11 Large Data

11-142

Creating Tall Timetables

If the data you are working with has a time associated with each row of data, then you
can convert the tall table into a tall timetable. You can use table2timetable to convert
an entire tall table, or construct the new tall timetable using specific table variables
using the timetable function.

In this case, the tall table tt has times associated with each row, but they are broken
down into several table variables such as Year, Month, DayofMonth, and so on. Combine
all of these pieces of datetime information into a single new tall datetime variable Dates,
which is based on the departure times DepTime. Create a tall timetable using Dates as
the row times. Since Dates is the only datetime variable in the table, the
table2timetable function automatically uses it for the row times.

hrs = (tt.DepTime - mod(tt.DepTime,100))/100;
mins = mod(tt.DepTime,100);
tt.Dates = datetime(tt.Year, tt.Month, tt.DayofMonth, hrs, mins, 0);
tt(:,1:8) = [];
TT = table2timetable(tt)

TT =

 M×21 tall timetable

 Dates UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay
 ____________________ _____________ _________ _______ _________________ ______________ _______ ________ ________ ______ _____ ________ ______ _______ _________ ________________ ________ ____________ ____________ ________ _____________ _________________

 21-Oct-1987 06:42:00 'PS' 1503 'NA' 53 57 NaN 8 12 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 26-Oct-1987 10:21:00 'PS' 1550 'NA' 63 56 NaN 8 1 'SJC' 'BUR' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 23-Oct-1987 20:55:00 'PS' 1589 'NA' 83 82 NaN 21 20 'SAN' 'SMF' 480 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 23-Oct-1987 13:32:00 'PS' 1655 'NA' 59 58 NaN 13 12 'BUR' 'SJC' 296 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 22-Oct-1987 06:29:00 'PS' 1702 'NA' 77 72 NaN 4 -1 'SMF' 'LAX' 373 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 28-Oct-1987 14:46:00 'PS' 1729 'NA' 61 65 NaN 59 63 'LAX' 'SJC' 308 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 08-Oct-1987 09:28:00 'PS' 1763 'NA' 84 79 NaN 3 -2 'SAN' 'SFO' 447 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 10-Oct-1987 08:59:00 'PS' 1800 'NA' 155 143 NaN 11 -1 'SEA' 'LAX' 954 NaN NaN 0 'NA' 0 NaN NaN NaN NaN NaN
 : : : : : : : : : : : : : : : : : : : : : :
 : :

Creating Tall Arrays

When you extract a variable from a tall table or tall timetable, the result is a tall array of
the appropriate underlying data type. A tall array can be a numeric, logical, datetime,

 Tall Arrays

11-143

duration, calendar duration, categorical, string, or cell array. Also, you can convert an in-
memory array A into a tall array with tA = tall(A). The in-memory array A must be
one of the supported data types.

Extract the arrival delay ArrDelay from the tall timetable TT. This creates a new tall
array variable with underlying data type double.

a = TT.ArrDelay

a =

 M×1 tall double column vector

 8
 8
 21
 13
 4
 59
 3
 11
 :
 :

The classUnderlying and isaUnderlying functions are useful to determine the
underlying data type of a tall array.

Deferred Evaluation

One important aspect of tall arrays is that as you work with them, most operations are
not performed immediately. These operations appear to execute quickly, because the
actual computation is deferred until you specifically request that the calculations be
performed. You can trigger evaluation of a tall array with either the gather function (to
bring the result into memory) or the write function (to write the result to disk). This
deferred evaluation is important because even a simple command like size(X) executed
on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried
out. This information is then used to optimize the number of passes through the data
that will be required when you request output with the gather function. Thus, it is
normal to work with unevaluated tall arrays and request output only when you require
it. For more information, see “Deferred Evaluation of Tall Arrays” on page 11-170.

11 Large Data

11-144

Calculate the mean and standard deviation of the arrival delay. Use these values to
construct the upper and lower thresholds for delays that are within one standard
deviation of the mean. Notice that the result of each operation indicates that the array
has not been calculated yet.

m = mean(a,'omitnan')

m =

 tall double

 ?

s = std(a,'omitnan')

s =

 tall array

 ?

one_sigma_bounds = [m-s m m+s]

one_sigma_bounds =

 M×N×... tall array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Evaluation with gather

The benefit of delayed evaluation is that when the time comes for MATLAB to perform
the calculations, it is often possible to combine the operations in such a way that the
number of passes through the data is minimized. So even if you perform many
operations, MATLAB only makes extra passes through the data when absolutely
necessary.

The gather function forces evaluation of all queued operations and brings the resulting
output into memory. For this reason, you can think of gather as a bridge between tall

 Tall Arrays

11-145

arrays and in-memory arrays. For example, you cannot control if or while loops using a
tall logical array, but once the array is evaluated with gather it becomes an in-memory
logical array that you can use in these contexts.

Since gather returns the entire result in MATLAB, you should make sure that the
result will fit in memory.

Use gather to calculate one_sigma_bounds and bring the result into memory. In this
case, one_sigma_bounds requires several operations to calculate, but MATLAB
combines the operations into one pass through the data. Since the data in this example is
small, gather executes quickly. However, the elimination of passes through the data
becomes more valuable as the size of your data increases.
sig1 = gather(one_sigma_bounds)
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

sig1 =

 -23.4572 7.1201 37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several
tall arrays at once. This technique is faster than calling gather multiple times. For
example, calculate the minimum and maximum arrival delay. Computed separately,
each value requires a pass through the data to calculate for a total of two passes.
However, computing both values simultaneously requires only one pass through the
data.
[max_delay, min_delay] = gather(max(a),min(a))
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

max_delay =

 1014

min_delay =

 -64

11 Large Data

11-146

These results indicate that on average, most flights arrive about 7 minutes late. But it is
within one standard deviation for a flight to be up to 37 minutes late or 23 minutes early.
The quickest flight in the data set arrived about an hour early, and the latest flight was
delayed by many hours.

Saving, Loading, and Checkpointing Tall Arrays
The save function saves the state of a tall array, but does not copy any of the data. The
resulting .mat file is typically small. However, the original data files must be available
in the same location in order to subsequently use load.

The write function makes a copy of the data and saves the copy as a collection of binary
files, which can consume a large amount of disk space. write executes all pending
operations on the tall array to calculate the values prior to writing. Once write copies
the data, it is independent of the original raw data. Therefore, you can recreate the tall
array from the written files even if the original raw data is no longer available.

You can recreate the tall array from the written binary files by creating a new datastore
that points to the location where the files were written. This functionality enables you to
create checkpoints or snapshots of tall array data. Creating a checkpoint is a good way to
save the results of preprocessing your data, so that the data is in a form that is more
efficient to load.

If you have a tall array TA, then you can write it to the folder location with the
command:

write(location,TA);

Later, to reconstruct TA from the written files, use the commands:

ds = datastore(location);
TA = tall(ds);

Additionally, you can use the write function to trigger evaluation of a tall array and
write the results to disk. This use of write is similar to gather, however, write does
not bring any results into memory.

Toolbox Capabilities
Tall arrays are supported by several toolboxes, enabling you to do things like write
machine learning algorithms, deploy standalone apps, and run calculations in parallel or

 Tall Arrays

11-147

on a cluster. For more information, see “Extend Tall Arrays with Other Products” on
page 11-207.

See Also
datastore | gather | mapreducer | table | tall

More About
• “Functions That Support Tall Arrays (A–Z)” on page 11-149
• “Index and View Tall Array Elements” on page 11-176
• “Visualization of Tall Arrays” on page 11-193

11 Large Data

11-148

Functions That Support Tall Arrays (A–Z)
This page lists the MATLAB functions that work with tall arrays, organized
alphabetically.

Most core functions work the same way with tall arrays as they do with in-memory
arrays. However, in some cases the way that a function works with tall arrays is special
or has limitations. Other than the limitations listed on this page, tall arrays fully support
all syntaxes of the listed functions.
Function Notes or Limitations
abs
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
addcats
all
and
angle
any
array2table The 'RowNames' name-value pair is not supported.
arrayfun • The specified function must not rely on persistent

variables.
• The 'ErrorHandler' name-value pair is not supported.
• With the 'UniformOutput' name-value pair set to true

(default), the outputs from the specified function must be
numeric, logical, characters, or cell arrays.

 Functions That Support Tall Arrays (A–Z)

11-149

Function Notes or Limitations
asec
asecd
asech
asin
asind
asinh
atan
atan2
atan2d
atand
atanh
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaincinv
betaln
between
binscatter With tall arrays, the binscatter function plots in iterations,

progressively adding to the plot as more data is read. During
the updates, a progress indicator shows the proportion of data
that has been plotted. Zooming and panning is supported
during the update process, before the plot is complete. To stop
the update process, press the pause button in the progress
indicator.

bounds

11 Large Data

11-150

Function Notes or Limitations
bsxfun The specified function must not rely on persistent variables.
caldays
calendarDuration
calmonths
calquarters
calweeks
calyears
cart2pol
cart2sph
cat Concatenation in the tall dimension (dimension one) is not

supported.
categorical With the syntax B = categorical(A), the order of categories

is undefined. Use valueset and catnames to enforce the order.
categories
ceil
cell2mat
cellfun • The input function must be a function handle.

• The input function must not rely on persistent variables.
• The 'ErrorHandler' name-value pair is not supported.
• With the 'UniformOutput' name-value pair set to true

(default), the outputs from the specified function must be
numeric, logical, characters, or cell arrays.

cellstr
char • For the syntax C = char(A), the input A must be a tall

numeric column vector.
• Syntaxes with more than one input are not supported.

classUnderlying
complex
compose The format input must be a non-tall string.

 Functions That Support Tall Arrays (A–Z)

11-151

Function Notes or Limitations
conj
contains
conv • The inputs A and B must be column vectors.

• B cannot be a tall array.
cos
cosd
cosh
cot
cotd
coth
count
countcats
cov • For the syntax C = cov(X,Y), the inputs X and Y must

have the same size, even if they are vectors.
• The option 'partialrows' is not supported.

csc
cscd
csch
cummax The 'reverse' direction is not supported.
cummin
cumprod
cumsum
datenum
dateshift
datestr
datetime Always specify the input datetime format when creating a tall

datetime array for character vectors in a cell array.
datevec

11 Large Data

11-152

Function Notes or Limitations
day
days
deblank
deg2rad
diff You must use the three-input syntax Y = diff(X,N,dim).
discretize
disp
display
dot For the syntax dot(A,B), the arrays A and B must have the

same size, even if they are vectors.
double
duration
end
endsWith
eps
eq
erase
eraseBetween
erf
erfc
erfcinv
erfcx
erfinv
exceltime
exp
expint
expm1
extractAfter

 Functions That Support Tall Arrays (A–Z)

11-153

Function Notes or Limitations
extractBefore
extractBetween Expansion in the first dimension is not supported with tall

arrays.
fillmissing • The 'spline' method is not supported.

• The 'SamplePoints' name-value pair is not supported.
• The 'DataVariables' name-value pair cannot specify a

function handle.
• The 'EndValues' name-value pair can only specify

'extrap'.
• The syntax fillmissing(A,movmethod,window) is not

supported when A is a tall timetable.
• The syntax fillmissing(A,'constant',v) must specify

a scalar value for v. Additionally, when A is a tall table or
tall timetable, this syntax does not support character vector
variables.

filter The two-output syntax [y,zf] = filter(___) is not
supported when dim > 1.

findgroups • Use only the syntaxes G = findgroups(A) or G =
findgroups(A1,A2,...) with tall array A. Multiple
output arguments are not supported, and A cannot be a tall
table.

• The order of the group numbers in G might be different
compared to in-memory findgroups calculations.

fix
floor
gamma
gammainc
gammaincinv
gammaln
gather

11 Large Data

11-154

Function Notes or Limitations
ge
gt
head You can use head and tail with tall arrays of any valid

underlying data type (single, double, int8, datetime,
table, and so on).

height
histcounts • Some input options are not supported. The allowed options

are:

• 'BinWidth'
• 'BinLimits'
• 'Normalization'
• 'BinMethod' — The 'auto' and 'scott' bin methods

are the same. The 'fd' bin method is not supported.

 Functions That Support Tall Arrays (A–Z)

11-155

Function Notes or Limitations
histogram • Some input options are not supported. The allowed options

are:

• 'BinWidth'
• 'BinLimits'
• 'Normalization'
• 'DisplayStyle'
• 'BinMethod' — The 'auto' and 'scott' bin methods

are the same. The 'fd' bin method is not supported.
• 'EdgeAlpha'
• 'EdgeColor'
• 'FaceAlpha'
• 'FaceColor'
• 'LineStyle'
• 'LineWidth'
• 'Orientation'

• Additionally, there is a cap on the maximum number of bars.
The default maximum is 100.

• The morebins and fewerbins methods are not supported.
• Editing properties of the histogram object that require

recomputing the bins is not supported.

11 Large Data

11-156

Function Notes or Limitations
histogram2 • Some input options are not supported. The allowed options

are:

• 'BinWidth'
• 'XBinLimits'
• 'YBinLimits'
• 'Normalization'
• 'DisplayStyle'
• 'BinMethod' — The 'auto' and 'scott' bin methods

are the same. The 'fd' bin method is not supported.
• 'EdgeAlpha'
• 'EdgeColor'
• 'FaceAlpha'
• 'FaceColor'
• 'LineStyle'
• 'LineWidth'
• 'Orientation'

• Additionally, there is a cap on the maximum number of bars.
The default maximum is 100.

• The morebins and fewerbins methods are not supported.
• Editing properties of the histogram object that require

recomputing the bins is not supported.
hms
horzcat
hour
hours
hypot
idivide
im2double
imag

 Functions That Support Tall Arrays (A–Z)

11-157

Function Notes or Limitations
ind2sub
innerjoin • You cannot join two tall inputs. innerjoin can join

together:

• A tall table with a regular table.
• A tall timetable with a regular table or timetable.

• You must specify one output argument. The three-output
syntax [C,ia,ib] = innerjoin(___) is not supported.

insertAfter
insertBefore
int16
int32
int64
int8
ipermute Permuting the tall dimension (dimension one) is not supported.
isaUnderlying
isbetween Tall character vector inputs are not supported.
iscolumn
isdst
isempty
isfinite
isinf
ismatrix
ismember Input A must be a tall array, and input B must be an in-memory

array.
ismissing
isnan
isnat
isrow

11 Large Data

11-158

Function Notes or Limitations
isscalar
issorted
issortedrows
istall
isundefined
isvector
isweekend
join (string)
join (table) • You cannot join two tall inputs. join can join together:

• A tall table with a regular table.
• A tall timetable with a regular table or timetable.

• The two-output syntax [C,iB] = join(...) is not
supported.

juliandate
ldivide
le
length
log
log10
log1p
log2
logical
lower
lt
max The two-output syntax [Y,I] = max(...) is not supported.
mean Tall datetime arrays are not supported.
median Input A must be a column vector to compute median in the first

dimension.

 Functions That Support Tall Arrays (A–Z)

11-159

Function Notes or Limitations
mergecats
milliseconds
min The two-output syntax [Y,I] = min(...) is not supported.
minus
minute
minutes
mldivide For the syntax Z = X\Y, the array X must be a non-tall scalar.
mod
month
movmad

The 'SamplePoints' name-value pair is not supported.

movmax
movmean
movmedian
movmin
movprod
movstd
movsum
movvar
mrdivide For the syntax Z = X/Y, the array Y must be a non-tall scalar.
mtimes • For A*B, only A or B can be a tall array. If B is a tall array,

then A must be a scalar. If A is a tall array, then B must have
the same number of rows as A has columns.

• For A'*B, both A and B must be tall vectors or matrices with
a common size in the first dimension.

ndims
ne
nextpow2
nnz

11 Large Data

11-160

Function Notes or Limitations
norm
not
nthroot
numel
or
pad If you do not specify width, then a full pass through the data is

required to determine it.
permute Permuting the tall dimension (dimension one) is not supported.
pie X must be a tall categorical array.
plot • X must be in monotonically increasing order.

• Categorical inputs are not supported.
• With tall arrays, the plot function plots in iterations,

progressively adding to the plot as more data is read. During
the updates, a progress indicator shows the proportion of
data that has been plotted. Zooming and panning is
supported during the updating process, before the plot is
complete. To stop the update process, press the pause button
in the progress indicator.

plus
pol2cart
polyfit X and Y must be column vectors.
polyval x must be a column vector.
posixtime
pow2
power
prod
psi For the syntax Y = psi(k,X), k must be a non-tall scalar.
quarter
rad2deg

 Functions That Support Tall Arrays (A–Z)

11-161

Function Notes or Limitations
rdivide
real
reallog
realpow
realsqrt
regexprep
rem
removecats
renamecats
reordercats
repelem • The two-input syntax is not supported.

• The replication factor in the first dimension must be 1. For
example, repelem(TA,1,n,p,...).

replace
replaceBetween
repmat The replication factor in the first dimension must be 1. For

example, repmat(TA,1,n,p,...).
reshape Reshaping the tall dimension (dimension one) is not supported.

The first dimension input should always be empty, such as
reshape(X,[],M,N,...).

retime • Nearest neighbor and interpolation methods are not
supported.

• The 'EndValues' name-value pair is not supported.
reverse
rmmissing • The 'DataVariables' name-value pair cannot specify a

function handle.
• rmmissing(A,2) is not supported for tall tables.

round

11 Large Data

11-162

Function Notes or Limitations
scatter • sz must be scalar or empty [].

• c must be scalar or an RGB triplet.
• Categorical inputs are not supported.
• With tall arrays, the scatter function plots in iterations,

progressively adding to the plot as more data is read. During
the updates, a progress indicator shows the proportion of
data that has been plotted. Zooming and panning is
supported during the updating process, before the plot is
complete. To stop the update process, press the pause button
in the progress indicator.

sec
secd
sech
second
seconds
setcats
sign
sin
sind
single
sinh
size
sort • Multiple outputs are not supported.

• You must specify the dimension to sort, as in sort(X,dim).
• Sorting the tall dimension, as in sort(X,1), is only

supported for column vectors.

 Functions That Support Tall Arrays (A–Z)

11-163

Function Notes or Limitations
sortrows • For tall arrays, valid syntaxes are:

• Y = sortrows(X)
• Y = sortrows(X,col)
• Y = sortrows(X,direction)
• Y = sortrows(___,Name,Value)

• For tall tables and tall timetables, valid syntaxes are:

• Y = sortrows(T,vars)
• Y = sortrows(T,vars,direction)

• Multiple outputs are not supported.
sph2cart
split (calendar
duration)

split (string)
splitapply The specified function must not rely on any state, such as

persistent variables or random number functions like rand.
sqrt
squeeze
stack The two-output syntax [S,iu] = stack(...) is not

supported.
standardizeMissing
startsWith
std The weighting scheme cannot be a vector.
str2double
strcmp
strcmpi

11 Large Data

11-164

Function Notes or Limitations
strfind • The text input must be a tall array of strings or a tall cell

array of character vectors.
• The text pattern must be a non-tall single string.
• The output is a cell array of index vectors, with one element

per input string.
string
strip
strlength
strncmp
strncmpi
strrep • The original string must be a tall array of strings or a tall

cell array of character vectors.
• The old string and new string inputs can be single strings or

tall arrays of strings with the same size.
strtrim
sub2ind
sum
summary Some fields in the summary can be impossible to calculate in a

reasonable amount of time, such as the median.
swapbytes
synchronize • The newTimes input must be strictly increasing instead of

strictly monotonic.
• The 'commonrange' option for the newTimeBasis input is

not supported.
• The 'spline' interpolation method is not supported.
• The 'EndValues' name-value pair is not supported.

table • The syntax TT = table(T1,T2,...) constructs a tall
table from several tall arrays T1,T2,.... You can use the
'VariableNames' name-value pair to specify variable
names.

 Functions That Support Tall Arrays (A–Z)

11-165

Function Notes or Limitations
table2array
table2cell
table2timetable
tail You can use head and tail with tall arrays of any valid

underlying data type (single, double, int8, datetime,
table, and so on).

tan
tand
tanh
time
timeofday
times

11 Large Data

11-166

Function Notes or Limitations
timetable • Creation. There are three ways to create a tall timetable:

1 Convert an existing tall table using table2timetable.

ds = datastore('data/folder/path.csv');
tt = tall(ds);
TT = table2timetable(tt);

The default behavior is to use the first datetime or
duration variable in the tall table tt for the row times.
To specify the row times yourself, use the 'RowTimes'
name-value pair to specify either a tall datetime or a tall
duration vector of row times.

TT = table2timetable(tt,'RowTimes',rowTimes)
2 Manually construct a tall timetable from the variables

in a tall table using the timetable constructor.

ds = datastore('data/folder/path.csv');
tt = tall(ds);
TT = timetable(rowTimes, tt.Var1, tt.Var2, ...)

3 Convert an in-memory timetable into a tall timetable
using the syntax TT = tall(tt).

• Indexing. The timerange and withtol functions are
supported for indexing into tall timetables. The vartype
function is not supported.

• Supported Functions. These functions support tall
timetables.
head join stack topkrows
height ndims standardize

Missing
timetable2t
able

horzcat numel summary unique
isempty retime synchronize varfun
innerjoin size table2array width
ismember sortrows table2cell
ismissing splitapply tail

 Functions That Support Tall Arrays (A–Z)

11-167

Function Notes or Limitations
timetable2table
topkrows • Multiple outputs are not supported.

• The 'ComparisonMethod' name-value pair is not
supported.

• The 'RowNames' option for tables is not supported.
tzoffset
uint16
uint32
uint64
uint8
uminus
unique • Use the syntax C = unique(A) for tall vectors and tall

tables, or C = unique(A,'rows') for tall matrices.
• Multiple outputs are not supported.

uplus
upper
var The weighting scheme cannot be a vector.
varfun • The func input must always return a tall array.

• Supported name-value pairs are:

• 'InputVariables' — Cannot be specified as a function
handle.

• 'OutputFormat' — Value can be 'uniform', 'table',
'timetable', or 'cell' only.

• When the input array is a tall timetable and
'OutputFormat' is 'timetable', the specified function
must return an array with the same size in the first
dimension as the input. Specify 'OutputFormat' as
'table' when the input function is a reduction function
such as mean.

vertcat

11 Large Data

11-168

Function Notes or Limitations
week
width
write
xor
year
years
ymd
yyyymmdd

Statistics and Machine Learning Toolbox Functions

If you have Statistics and Machine Learning Toolbox™, then there are additional
functions available for working with tall arrays. For example, you can use grpstats to
calculate grouped statistics, kmeans to perform k-means clustering, fitlm to fit linear
regression models, or fitcdiscr to fit a discriminant analysis classifier. For more
information, see “Tall Array Support, Usage Notes, and Limitations” (Statistics and
Machine Learning Toolbox).

See Also

More About
• “Tall Arrays” on page 11-141

 See Also

11-169

Deferred Evaluation of Tall Arrays
One of the differences between tall arrays and in-memory MATLAB arrays is that tall
arrays typically remain unevaluated until you request that calculations be performed.
(The exceptions to this rule include plotting functions like plot and histogram and
some statistical fitting functions like fitlm, which automatically evaluate tall array
inputs.) While a tall array is in an unevaluated state, MATLAB might not know its size,
its data type, or the specific values it contains. However, you can still use unevaluated
arrays in your calculations as if the values were known. This allows you to work quickly
with large data sets instead of waiting for each command to execute. For this reason, it is
recommended that you use gather only when you require output.

MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you
enter them. When you eventually call gather to evaluate the queued operations,
MATLAB uses the history of unevaluated commands to optimize the calculation by
minimizing the number of passes through the data. Used properly, this optimization can
save huge amounts of execution time by eliminating unnecessary passes through large
data sets.

Display of Unevaluated Tall Arrays

The display of unevaluated tall arrays varies depending on how much MATLAB knows
about the array and its values. There are three pieces of information reflected in the
display:

• Array size — Unknown dimension sizes are represented by the variables M or N in
the display. If no dimension sizes are known, then the size appears as MxNx.....

• Array data type — If the array has an unknown underlying data type, then its type
appears as tall array. If the type is known, it is listed as, for example, tall
double array.

• Array values — If the array values are unknown, then they appear as ?. Known
values are displayed.

MATLAB might know all, some, or none of these pieces of information about a given tall
array, depending on the nature of the calculation.

For example, if the array has a known data type but unknown size and values, then the
unevaluated tall array might look like this:

11 Large Data

11-170

M×N×... tall double array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

If the type and relative size are known, then the display could be:
 1×N tall char array

 ? ? ? ...

If some of the data is known, then MATLAB displays the known values:
 100×3 tall double matrix

 0.7482 0.5870 0.1499
 0.4505 0.2077 0.6596
 0.0838 0.3012 0.5186
 0.2290 0.4709 0.9730
 0.9133 0.2305 0.6490
 0.1524 0.8443 0.8003
 0.8258 0.1948 0.4538
 0.5383 0.2259 0.4324
 : : :
 : : :

Evaluation with gather
The gather function is used to evaluate tall arrays. gather accepts tall arrays as inputs
and returns in-memory arrays as outputs. For this reason, you can think of this function
as a bridge between tall arrays and in-memory arrays. For example, you cannot control
if or while loop statements using a tall logical array, but once the array is evaluated
with gather it becomes an in-memory logical value that you can use in these contexts.

gather performs all queued operations on a tall array and returns the entire result in
memory. Since gather returns results as in-memory MATLAB arrays, standard memory
considerations apply. MATLAB might run out of memory if the result returned by
gather is too large.

Most of the time you can use gather to see the entire result of a calculation, particularly
if the calculation includes a reduction operation such as sum or mean. However, if the

 Deferred Evaluation of Tall Arrays

11-171

result is too large to fit in memory, then you can use gather(head(X)) or
gather(tail(X)) to perform the calculation and look at only the first or last few rows
of the result.

Resolve Errors with gather

If you enter an erroneous command and gather fails to evaluate a tall array variable,
then you must delete the variable from your workspace and recreate the tall array using
only valid commands. This is because MATLAB keeps track of all the operations you
perform on unevaluated tall arrays as you enter them. The only way to make MATLAB
“forget” about an erroneous statement is to reconstruct the tall array from scratch.

Example: Calculate Size of Tall Array

This example shows what an unevaluated tall array looks like, and how to evaluate the
array.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall
table and then calculate the size.

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', 'SelectedVariableNames', varnames);
tt = tall(ds)

tt =

 M×4 tall table

 ArrDelay DepDelay Origin Dest
 ________ ________ ______ _____

 8 12 'LAX' 'SJC'
 8 1 'SJC' 'BUR'
 21 20 'SAN' 'SMF'
 13 12 'BUR' 'SJC'
 4 -1 'SMF' 'LAX'
 59 63 'LAX' 'SJC'
 3 -2 'SAN' 'SFO'
 11 -1 'SEA' 'LAX'
 : : : :
 : : : :

11 Large Data

11-172

s = size(tt)

s =

 1×2 tall double row vector

 ? ?

Calculating the size of a tall array returns a small answer (a 1-by-2 vector), but the
display indicates that an entire pass through the data is still required to calculate the
size of tt.

Use the gather function to fully evaluate the tall array and bring the results into
memory. As the command executes, there is a dynamic progress display in the command
window that is particularly helpful with long calculations.

Note Always ensure that the result returned by gather will be able to fit in memory. If
you use gather directly on a tall array without reducing its size using a function such as
mean, then MATLAB might run out of memory.

tableSize = gather(s)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0 sec
Evaluation completed in 0 sec

tableSize =

 123523 4

Example: Multipass Calculations with Tall Arrays

This example shows how several calculations can be combined to minimize the total
number of passes through the data.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall
table.

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', 'SelectedVariableNames', varnames);
tt = tall(ds)

 Deferred Evaluation of Tall Arrays

11-173

tt =

 M×4 tall table

 ArrDelay DepDelay Origin Dest
 ________ ________ ______ _____

 8 12 'LAX' 'SJC'
 8 1 'SJC' 'BUR'
 21 20 'SAN' 'SMF'
 13 12 'BUR' 'SJC'
 4 -1 'SMF' 'LAX'
 59 63 'LAX' 'SJC'
 3 -2 'SAN' 'SFO'
 11 -1 'SEA' 'LAX'
 : : : :
 : : : :

Subtract the mean value of DepDelay from ArrDelay to create a new variable
AdjArrDelay. Then calculate the mean value of AdjArrDelay and subtract this mean
value from AdjArrDelay. If these calculations were all evaluated separately, then
MATLAB would require four passes through the data.
AdjArrDelay = tt.ArrDelay - mean(tt.DepDelay,'omitnan');
AdjArrDelay = AdjArrDelay - mean(AdjArrDelay,'omitnan')

AdjArrDelay =

 M×N×... tall array

 ? ? ? ...
 ? ? ? ...
 ? ? ? ...
 : : :
 : : :

Evaluate AdjArrDelay and view the first few rows. Because some calculations can be
combined, only three passes through the data are required.
gather(head(AdjArrDelay))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 3: Completed in 0 sec
- Pass 2 of 3: Completed in 0 sec
- Pass 3 of 3: Completed in 0 sec

11 Large Data

11-174

Evaluation completed in 2 sec

ans =

 0.8799
 0.8799
 13.8799
 5.8799
 -3.1201
 51.8799
 -4.1201
 3.8799

Summary of Behavior and Recommendations
1 Tall arrays remain unevaluated until you request output using gather.
2 Use gather in most cases to evaluate tall array calculations. If you believe the

result of the calculations might not fit in memory, then use gather(head(X)) or
gather(tail(X)) instead.

3 Work primarily with unevaluated tall arrays and request output only when
necessary. The more queued calculations there are that are unevaluated, the more
optimization MATLAB can do to minimize the number of passes through the data.

4 If you enter an erroneous tall array command and gather fails to evaluate a tall
array variable, then you must delete the variable from your workspace and recreate
the tall array using only valid commands.

See Also
gather | write

More About
• “Tall Arrays” on page 11-141

 See Also

11-175

Index and View Tall Array Elements
Tall arrays are too large to fit in memory, so it is common to view subsets of the data
rather than the entire array. This page shows techniques to extract and view portions of
a tall array.

Extract Top Rows of Array

Use the head function to extract the first rows in a tall array. head does not force
evaluation of the array, so you must use gather to view the result.

tt = tall(table(randn(1000,1),randn(1000,1),randn(1000,1)))

tt =

 1,000×3 tall table

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008
 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363
 : : :
 : : :

t_head = gather(head(tt))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0 sec

t_head =

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008

11 Large Data

11-176

 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363

Extract Bottom Rows of Array

Similarly, you can use the tail function to extract the bottom rows in a tall array.

t_tail = gather(tail(tt))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0 sec

t_tail =

 Var1 Var2 Var3
 ________ ________ ________

 0.64776 0.47349 -0.27077
 -0.31763 1.3656 0.43966
 1.769 -1.6378 -0.50614
 1.5106 2.0237 -0.18435
 0.16401 0.77779 0.402
 -0.28276 -0.5489 0.53923
 1.1522 -0.12601 -0.73359
 -1.1465 0.29958 -0.26837

Indexing Tall Arrays

Indexing with tall arrays is slightly constrained in the tall dimension (the first
dimension). Like most other operations on tall arrays, indexing expressions are not
evaluated immediately. You must use gather to evaluate the indexing operation. For
more information, see “Deferred Evaluation of Tall Arrays” on page 11-170.

All types of tall arrays support parentheses indexing. When you index a tall array using
parentheses, such as T(A) or T(A,B), the result is a new tall array containing only the
specified rows and columns (or variables).

For example, use parentheses indexing to retrieve the first ten rows of tt.

 Index and View Tall Array Elements

11-177

tt(1:10,:)

ans =

 10×3 tall table

 Var1 Var2 Var3
 ________ ________ ________

 0.53767 0.6737 0.29617
 1.8339 -0.66911 1.2008
 -2.2588 -0.40032 1.0902
 0.86217 -0.6718 -0.3587
 0.31877 0.57563 -0.12993
 -1.3077 -0.77809 0.73374
 -0.43359 -1.0636 0.12033
 0.34262 0.55298 1.1363
 : : :
 : : :

Retrieve the last 5 values of the table variable Var1.

tt(end-5:end,'Var1')

ans =

 6×1 tall table

 Var1

 1.769
 1.5106
 0.16401
 -0.28276
 1.1522
 -1.1465

Retrieve every 100th row from the tall table.

tt(1:100:end,:)

ans =

 10×3 tall table

11 Large Data

11-178

 Var1 Var2 Var3
 _________ _________ ________

 0.53767 0.6737 0.29617
 0.84038 -0.041663 -0.52093
 0.18323 1.3419 0.052993
 0.079934 -0.40492 -1.6163
 0.26965 -1.5144 0.98399
 -0.079893 -1.6848 -0.91182
 0.47586 -2.1746 1.1754
 1.9085 -0.79383 0.18343
 : : :
 : : :

You can perform these types of indexing:

• Sorted (either ascending or descending) indices, such as tt(1:100:end,:) to extract
every 100th row from a tall table. These indices can specify elements anywhere in the
array and allow for duplicates.

• head provides a shortcut for indexing a consecutive range of elements starting at
the beginning of the array, such as tt(1:K,:).

• tail provides a shortcut for indexing a consecutive range of elements ending at
the end of the array, such as tt(end-K:end,:).

• Logical indexing using a tall logical vector of the appropriate size. For example, you
can use relational operators, such as tt(tt.Var1 < 10,:).

The number of subscripts you must specify depends on how many dimensions the array
has:

• For tall column vectors, you can specify a single subscript such as t(1:10).
• For tall row vectors, tall tables, and tall timetables, you must specify two subscripts.
• For tall arrays with two or more dimensions, you must specify a subscript for each

dimension. For example, if the array has three dimensions, you can use an expression
such as tA(1:10,:,:), but not linear indexing expressions such as tA(1:10) or
tA(:).

An example of an indexing expression that does not work with tall arrays is t([1 3 10
5 20],:), since the subscript indices are not sorted.

 Index and View Tall Array Elements

11-179

Extract Tall Table Variables

The variables in a tall table or tall timetable are each tall arrays of different underlying
data types. Most indexing methods of tables and timetables also apply to tall tables and
tall timetables.

Index a tall table using dot notation T.VariableName to retrieve a single variable of
data as a tall array.

tt.Var1

ans =

 1,000×1 tall double column vector

 0.5377
 1.8339
 -2.2588
 0.8622
 0.3188
 -1.3077
 -0.4336
 0.3426
 :
 :

Use tab completion to look up the variables in a table if you cannot remember a precise
variable name. For example, type tt. and then press Tab. A menu pops up:

11 Large Data

11-180

You can also perform multiple levels of indexing. For example, extract the first 5
elements in the variable Var2. In this case you must use one of the supported forms of
indexing for tall arrays in the parentheses.

tt.Var2(1:5)

ans =

 5×1 tall double column vector

 0.6737
 -0.6691
 -0.4003
 -0.6718
 0.5756

 Index and View Tall Array Elements

11-181

See “Access Data in a Table” or “Select Timetable Data by Row Time and Variable Type”
for more indexing information.

Assignment and Deletion with Tall Arrays
The same subscripting rules apply if you use indexing to assign or delete elements from a
tall array.

“()” Assignment

You can assign elements into a tall array using the general syntax A(m,n,...) = B.
The tall array A must exist. The first subscript m must be either a colon : or a tall logical
vector. With this syntax, B can be:

• Scalar
• A tall array derived from A(m,…) where m is the same subscript as above. For

example, A(m,1:10).
• An empty matrix, [] (for deletion)

“.” Assignment

For table indexing using the syntax A.Var1 = B, the array B must be a tall array with
the appropriate number of rows. Typically, B is derived from existing data in the tall
table. Var1 can be either a new or existing variable in the tall table.

You cannot assign tall arrays as variables in a regular table, even if the table is empty.

Extract Specified Number of Rows in Sorted Order
Sorting all of the data in a tall array can be an expensive calculation. Most often, only a
subset of rows at the beginning or end of a tall array is required to answer questions like
“What is the first row in this data by year?”

The topkrows function returns a specified number of rows in sorted order for this
purpose. For example, use topkrows to extract the top 12 rows sorted in descending
order by the second column.
t_top12 = gather(topkrows(tt,12,2))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0 sec

11 Large Data

11-182

t_top12 =

 Var1 Var2 Var3
 ________ ______ ________

 -1.0322 3.5699 -1.4689
 1.3312 3.4075 0.17694
 -0.27097 3.1585 0.50127
 0.55095 2.9745 1.382
 0.45168 2.9491 -0.8215
 -1.7115 2.7526 -0.3384
 -0.21317 2.7485 1.9033
 -0.43021 2.7335 0.77616
 -0.59003 2.7304 0.67702
 0.47163 2.7292 0.92099
 -0.47615 2.683 -0.26113
 0.72689 2.5383 -0.57588

Summarize Tall Array Contents
The summary function returns useful information about each variable in a tall table or
timetable, such as the minimum and maximum values of numeric variables, and the
number of occurrences of each category for categorical variables.

For example, create a tall table for the outages.csv data set and display the summary
information. This data set contains numeric, datetime, and categorical variables.
ds = datastore('outages.csv','TextscanFormats',{'%C' '%D' '%f' '%f' '%D' '%C'});
T = tall(ds);
summary(T)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0 sec
Evaluation completed in 0 sec

Variables:

 Region: 1,468×1 categorical
 Values:

 MidWest 142
 NorthEast 557
 SouthEast 389

 Index and View Tall Array Elements

11-183

 SouthWest 26
 West 354

 OutageTime: 1,468×1 datetime
 Values:

 min 02/01/2002 12:18
 max 01/15/2014 02:41

 Loss: 1,468×1 double
 Values:

 min 0
 max 23417.7235
 NaNs 604

 Customers: 1,468×1 double
 Values:

 min 0
 max 5968874.882
 NaNs 328

 RestorationTime: 1,468×1 datetime
 Values:

 min 02/07/2002 16:50
 max 09/18/2042 23:31
 NaTs 29

 Cause: 1,468×1 categorical
 Values:

 attack 294
 earthquake 2
 energy emergency 188
 equipment fault 156
 fire 25
 severe storm 338
 thunder storm 201
 unknown 24
 wind 95
 winter storm 145

11 Large Data

11-184

Return Subset of Calculation Results

Many of the examples on this page use gather to evaluate expressions and bring the
results into memory. However, in these examples it is also trivial that the results fit in
memory, since only a few rows are indexed at a time.

In cases where you are unsure if the result of an expression will fit in memory, it is
recommended that you use gather(head(X)) or gather(tail(X)). These commands
still evaluate all of the queued calculations, but return only a small amount of the result
that is guaranteed to fit in memory.

If you are certain that the result of a calculation will not fit in memory, use write to
evaluate the tall array and write the results to disk instead.

See Also
gather | head | table | tail | tall | topkrows

More About
• “Tall Arrays” on page 11-141

 See Also

11-185

Histograms of Tall Arrays
This example shows how to use histogram and histogram2 to analyze and visualize
data contained in a tall array.

Create Tall Table

Create a datastore using the airlinesmall.csv data set. Treat 'NA' values as missing
data so that they are replaced with NaN values. Select a subset of the variables to work
with. Convert the datastore into a tall table.

varnames = {'ArrDelay', 'DepDelay', 'Year', 'Month'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
 'SelectedVariableNames', varnames);
T = tall(ds)

T =

 Mx4 tall table

 ArrDelay DepDelay Year Month
 ________ ________ ____ _____

 8 12 1987 10
 8 1 1987 10
 21 20 1987 10
 13 12 1987 10
 4 -1 1987 10
 59 63 1987 10
 3 -2 1987 10
 11 -1 1987 10
 : : : :
 : : : :

Plot Histogram of Arrival Delays

Plot a histogram of the ArrDelay variable to examine the frequency distribution of
arrival delays.

h = histogram(T.ArrDelay);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 2 sec

11 Large Data

11-186

- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 6 sec

title('Flight arrival delays, 1987 - 2008')
xlabel('Arrival Delay (minutes)')
ylabel('Frequency')

The arrival delay is most frequently a small number near 0, so these values dominate the
plot and make it difficult to see other details.

Adjust Bin Limits of Histogram

Restrict the histogram bin limits to plot only arrival delays between -50 and 150
minutes. After you create a histogram object from a tall array, you cannot change any

 Histograms of Tall Arrays

11-187

properties that would require recomputing the bins, including BinWidth and
BinLimits. Also, you cannot use morebins or fewerbins to adjust the number of bins.
In these cases, use histogram to reconstruct the histogram from the raw data in the tall
array.

figure
histogram(T.ArrDelay,'BinLimits',[-50,150])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 4 sec

title('Flight arrival delays between -50 and 150 minutes, 1987 - 2008')
xlabel('Arrival Delay (minutes)')
ylabel('Probability')

11 Large Data

11-188

From this plot, it appears that long delays might be more common than initially
expected. To investigate further, find the probability of an arrival delay that is one hour
or greater.

Probability of Delays One Hour or Greater

The original histogram returned an object h that contains the bin values in the Values
property and the bin edges in the BinEdges property. You can use these properties to
perform in-memory calculations.

Determine which bins contain arrival delays of one hour (60 minutes) or more. Remove
the last bin edge from the logical index vector so that it is the same length as the vector
of bin values.

 Histograms of Tall Arrays

11-189

idx = h.BinEdges >= 60;
idx(end) = [];

Use idx to retrieve the value associated with each selected bin. Add the bin values
together, divide by the total number of samples, and multiply by 100 to determine the
overall probability of a delay greater than or equal to one hour. Since the total number of
samples is computed from the original data set, use gather to explicitly evaluate the
calculation and return an in-memory scalar.

N = numel(T.ArrDelay);
P = gather(sum(h.Values(idx))*100/N)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

P = 4.4809

Overall, the odds of an arrival delay one hour or longer are about 4.5%.

Plot Bivariate Histogram of Delays by Month

Plot a bivariate histogram of the arrival delays that are 60 minutes or longer by month.
This plot examines how seasonality affects arrival delay.

figure
h2 = histogram2(T.Month,T.ArrDelay,[12 50],'YBinLimits',[60 1100],...
 'Normalization','probability','FaceColor','flat');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 2 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1 sec
Evaluation completed in 1 sec

title('Probability of arrival delays 1 hour or greater (by month)')
xlabel('Month (1-12)')
ylabel('Arrival Delay (minutes)')
zlabel('Probability')
xticks(1:12)
view(-126,23)

11 Large Data

11-190

Delay Statistics by Month

Use the bivariate histogram object to calculate the probability of having an arrival delay
one hour or greater in each month, and the mean arrival delay for each month. Put the
results in a table with the variable P containing the probability information and the
variable MeanByMonth containing the mean arrival delay.

monthNames = {'Jan','Feb','Mar','Apr','May','Jun',...
 'Jul','Aug','Sep','Oct','Nov','Dec'}';
G = findgroups(T.Month);
M = splitapply(@(x) mean(x,'omitnan'),T.ArrDelay,G);
delayByMonth = table(monthNames, sum(h2.Values,2)*100, gather(M), ...
 'VariableNames',{'Month','P','MeanByMonth'})

 Histograms of Tall Arrays

11-191

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1 sec
- Pass 2 of 2: Completed in 2 sec
Evaluation completed in 5 sec

delayByMonth=12x3 table
 Month P MeanByMonth
 _____ ______ ___________

 'Jan' 9.6497 8.5954
 'Feb' 7.7058 7.3275
 'Mar' 9.0543 7.5536
 'Apr' 7.2504 6.0081
 'May' 7.4256 5.2949
 'Jun' 10.35 10.264
 'Jul' 10.228 8.7797
 'Aug' 8.5989 7.4522
 'Sep' 5.4116 3.6308
 'Oct' 6.042 4.6059
 'Nov' 6.9002 5.2835
 'Dec' 11.384 10.571

The results indicate that flights in the holiday month of December have an 11.4% chance
of being delayed longer than an hour, but are delayed by 10.5 minutes on average. This is
closely followed by the summer months of June and July, where there is about a 10%
chance of being delayed an hour or more and the average delay is roughly 9 or 10
minutes.

See Also
histogram | histogram2 | tall

More About
• “Tall Arrays” on page 11-141

11 Large Data

11-192

Visualization of Tall Arrays
Visualizing large data sets requires that the data is summarized, binned, or sampled in
some way to reduce the number of points that are plotted on the screen. In some cases,
functions such as histogram and pie bin the data to reduce the size, while other
functions such as plot and scatter use a more complex approach that avoids plotting
duplicate pixels on the screen. For problems where the pixel overlap is relevant to the
analysis, the binscatter function also offers an efficient way to visualize density
patterns.

Visualizing tall arrays does not require the use of gather. MATLAB immediately
evaluates and displays visualizations of tall arrays. Currently, you can visualize tall
arrays using the functions in this table.
Function Required Toolboxes Notes
plot — These functions plot in

iterations, progressively
adding to the plot as more
data is read. During the
updates, a progress
indicator shows the
proportion of data that has
been plotted. Zooming and
panning is supported during
the updating process, before
the plot is complete. To stop
the update process, press
the pause button in the
progress indicator.

scatter —
binscatter —

histogram —
histogram2 —
pie — For visualizing categorical

data only.

 Visualization of Tall Arrays

11-193

Function Required Toolboxes Notes
binScatterPlot Statistics and Machine

Learning Toolbox
Figure contains a slider to
control the brightness and
color detail in the image.
The slider adjusts the value
of the Gamma image
correction parameter.

ksdensity Statistics and Machine
Learning Toolbox

Produces a probability
density estimate for the
data, evaluated at 100
points for univariate data,
or 900 points for bivariate
data.

datasample Statistics and Machine
Learning Toolbox

datasample allows greater
control over subsampling
your data in a statistically
sound way compared to
simple indexing.

Tall Array Plotting Examples

This example shows several different ways you can visualize tall arrays.

Create a datastore for the airlinesmall.csv data set, which contains rows of airline
flight data. Select a subset of the table variables to work with and remove rows that
contain missing values.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'Year','Month','ArrDelay','DepDelay','Origin','Dest'};
T = tall(ds);
T = rmmissing(T)

T =

 Mx6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ _____

 1987 10 8 12 'LAX' 'SJC'

11 Large Data

11-194

 1987 10 8 1 'SJC' 'BUR'
 1987 10 21 20 'SAN' 'SMF'
 1987 10 13 12 'BUR' 'SJC'
 1987 10 4 -1 'SMF' 'LAX'
 1987 10 59 63 'LAX' 'SJC'
 1987 10 3 -2 'SAN' 'SFO'
 1987 10 11 -1 'SEA' 'LAX'
 : : : : : :
 : : : : : :

Pie Chart of Flights by Month

Convert the numeric Month variable into a categorical variable that reflects the name of
the month. Then plot a pie chart showing how many flights are in the data for each
month of the year.

T.Month = categorical(T.Month,1:12,{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'})

T =

 Mx6 tall table

 Year Month ArrDelay DepDelay Origin Dest
 ____ _____ ________ ________ ______ _____

 1987 Oct 8 12 'LAX' 'SJC'
 1987 Oct 8 1 'SJC' 'BUR'
 1987 Oct 21 20 'SAN' 'SMF'
 1987 Oct 13 12 'BUR' 'SJC'
 1987 Oct 4 -1 'SMF' 'LAX'
 1987 Oct 59 63 'LAX' 'SJC'
 1987 Oct 3 -2 'SAN' 'SFO'
 1987 Oct 11 -1 'SEA' 'LAX'
 : : : : : :
 : : : : : :

pie(T.Month)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 2 sec

 Visualization of Tall Arrays

11-195

Histogram of Delays

Plot a histogram of the arrival delays for each flight in the data. Since the data has a
long tail, limit the plotting area using the BinLimits name-value pair.

histogram(T.ArrDelay,'BinLimits',[-50 150])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 2 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 4 sec

11 Large Data

11-196

Scatter Plot of Delays

Plot a scatter plot of arrival and departure delays. You can expect a strong correlation
between these variables since flights that leave late are also likely to arrive late.

When operating on tall arrays, the plot, scatter, and binscatter functions plot the
data in iterations, progressively adding to the plot as more data is read. During the
updates the top of the plot has a progress indicator showing how much data has been
plotted. Zooming and panning is supported during the updates before the plot is
complete.
scatter(T.ArrDelay,T.DepDelay)
xlabel('Arrival Delay')
ylabel('Departure Delay')

 Visualization of Tall Arrays

11-197

xlim([-140 1000])
ylim([-140 1000])

The progress bar also includes a Pause/Resume button. Use the button to stop the plot
updates early once enough data is displayed.

Fit Trend Line

Use the polyfit and polyval functions to overlay a linear trend line on the plot of
arrival and departure delays.

hold on
p = polyfit(T.ArrDelay,T.DepDelay,1);
x = (-140:1000)';

11 Large Data

11-198

yp = polyval(p,x);
plot(tall(x),yp,'r-')
hold off

Visualize Density

The scatter plot of points is helpful up to a certain point, but it can be hard to decipher
information from the plot if the points overlap extensively. In that case, it helps to
visualize the density of points in the plot to spot trends.

Use the binscatter function to visualize the density of points in the plot of arrival and
departure delays.

 Visualization of Tall Arrays

11-199

binscatter(T.ArrDelay,T.DepDelay,'XLimits',[-100 1000],'YLimits',[-100 1000])
xlim([-100 1000])
ylim([-100 1000])
xlabel('Arrival Delay')
ylabel('Departure Delay')

Adjust the CLim property of the axes so that all bin values greater than 150 are colored
the same. This prevents a few bins with very large values from dominating the plot.

ax = gca;
ax.CLim = [0 150];

11 Large Data

11-200

See Also
plot | polyfit | tall

More About
• “Tall Arrays” on page 11-141

 See Also

11-201

Grouped Statistics Calculations with Tall Arrays
This example shows how to use the findgroups and splitapply functions to calculate
grouped statistics of a tall timetable containing power outage data. findgroups and
splitapply enable you to break up tall variables into groups, use those groups to
separate data, and then apply a function to each group of data. Alternatively, if you have
Statistics and Machine Learning Toolbox™, then you also can use the grpstats function
to calculate grouped statistics.

This example creates a tall timetable for the power outage data, even though the raw
data only has about 1500 rows. However, you can use the techniques presented here on
much larger data sets because no assumptions are made about the size of the data.

Create Datastore and Tall Timetable

The sample file, outages.csv, contains data representing electric utility outages in the
United States. The file contains six columns: Region, OutageTime, Loss, Customers,
RestorationTime, and Cause.

Create a datastore for the outages.csv file. Use the 'TextScanFormats' option to
specify the kind of data each column contains: categorical ('%C'), floating-point numeric
('%f'), or datetime ('%D').

data_formats = {'%C','%D','%f','%f','%D','%C'};
ds = datastore('outages.csv','TextscanFormats',data_formats);

Create a tall table on top of the datastore, and convert the tall table into a tall timetable.
The OutageTime variable is used for the row times since it is the first datetime or
duration variable in the table.

T = tall(ds);
T = table2timetable(T)

T =

 Mx5 tall timetable

 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _________ ______ __________ ________________ _______________

 2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 2003-01-23 00:49 SouthEast 530.14 2.1204e+05 NaT winter storm

11 Large Data

11-202

 2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 2004-04-06 05:44 West 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 2002-03-16 06:18 MidWest 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 2003-06-18 02:49 West 0 0 2003-06-18 10:54 attack
 2004-06-20 14:39 West 231.29 NaN 2004-06-20 19:16 equipment fault
 2002-06-06 19:28 West 311.86 NaN 2002-06-07 00:51 equipment fault
 : : : : : :
 : : : : : :

Clean Missing Data

Some of the rows in the tall table have missing data represented by NaN and NaT values.
Remove all of the rows that are missing at least one piece of data.
idx = ~any(ismissing(T),2);
T = T(idx,:)
T =

 Mx5 tall timetable

 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _________ ______ __________ ________________ _______________

 2002-02-01 12:18 SouthWest 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 2003-02-07 21:15 SouthEast 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 2004-04-06 05:44 West 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 2002-03-16 06:18 MidWest 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 2003-06-18 02:49 West 0 0 2003-06-18 10:54 attack
 2003-07-16 16:23 NorthEast 239.93 49434 2003-07-17 01:12 fire
 2004-09-27 11:09 MidWest 286.72 66104 2004-09-27 16:37 equipment fault
 2004-09-05 17:48 SouthEast 73.387 36073 2004-09-05 20:46 equipment fault
 : : : : : :
 : : : : : :

Mean Power Outage Duration by Region

Determine the mean power outage duration in each region. The findgroups function
groups the data by the categorical values in Region. The splitapply function applies
the specified function to each group of data and concatenates the results together.
G = findgroups(T.Region);
times = gather(splitapply(@mean,T.RestorationTime-T.OutageTime,G))
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0 sec

 Grouped Statistics Calculations with Tall Arrays

11-203

- Pass 2 of 2: Completed in 0 sec
Evaluation completed in 2 sec

times = 5x1 duration array
 1254:11:20
 44:29:29
 44:02:22
 48:30:36
 23:58:28

Change the display format of the duration results to be in days, and put the results in a
table with the associated regions.

times.Format = 'd';
regions = gather(categories(T.Region));

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0 sec
Evaluation completed in 0 sec

varnames = {'Regions','MeanOutageDuration'};
maxOutageDurations = table(regions,times,'VariableNames',varnames)

maxOutageDurations=5x2 table
 Regions MeanOutageDuration
 ___________ __________________

 'MidWest' 52.258 days
 'NorthEast' 1.8538 days
 'SouthEast' 1.835 days
 'SouthWest' 2.0212 days
 'West' 0.99895 days

Most Common Power Outage Causes by Region

Determine how often each power outage cause occurs in each region. First, group the
data by both cause and region. Then use splitapply to create a cell array containing
the number of occurrences of each cause in each region.

G2 = findgroups(T.Cause,T.Region);
C = splitapply(@(r,c) {size(r,1),r(1),c(1)},T.Region,T.Cause,G2);
C = gather(C)

11 Large Data

11-204

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 3 sec
C = 43x3 cell array
 {[4]} {[MidWest]} {[attack]}
 {[75]} {[NorthEast]} {[attack]}
 {[6]} {[SouthEast]} {[attack]}
 {[44]} {[West]} {[attack]}
 {[1]} {[NorthEast]} {[earthquake]}
 {[1]} {[West]} {[earthquake]}
 {[11]} {[MidWest]} {[energy emergency]}
 {[11]} {[NorthEast]} {[energy emergency]}
 {[39]} {[SouthEast]} {[energy emergency]}
 {[5]} {[SouthWest]} {[energy emergency]}
 {[19]} {[West]} {[energy emergency]}
 {[6]} {[MidWest]} {[equipment fault]}
 {[13]} {[NorthEast]} {[equipment fault]}
 {[28]} {[SouthEast]} {[equipment fault]}
 {[1]} {[SouthWest]} {[equipment fault]}
 {[50]} {[West]} {[equipment fault]}
 {[4]} {[NorthEast]} {[fire]}
 {[2]} {[SouthEast]} {[fire]}
 {[10]} {[West]} {[fire]}
 {[17]} {[MidWest]} {[severe storm]}
 {[54]} {[NorthEast]} {[severe storm]}
 {[86]} {[SouthEast]} {[severe storm]}
 {[4]} {[SouthWest]} {[severe storm]}
 {[13]} {[West]} {[severe storm]}
 {[22]} {[MidWest]} {[thunder storm]}
 {[37]} {[NorthEast]} {[thunder storm]}
 {[39]} {[SouthEast]} {[thunder storm]}
 {[6]} {[SouthWest]} {[thunder storm]}
 {[4]} {[West]} {[thunder storm]}
 {[4]} {[MidWest]} {[unknown]}
 {[4]} {[NorthEast]} {[unknown]}
 {[2]} {[SouthEast]} {[unknown]}
 {[1]} {[West]} {[unknown]}
 {[12]} {[MidWest]} {[wind]}
 {[19]} {[NorthEast]} {[wind]}
 {[11]} {[SouthEast]} {[wind]}
 {[3]} {[SouthWest]} {[wind]}
 {[15]} {[West]} {[wind]}
 {[9]} {[MidWest]} {[winter storm]}

 Grouped Statistics Calculations with Tall Arrays

11-205

 {[30]} {[NorthEast]} {[winter storm]}
 {[23]} {[SouthEast]} {[winter storm]}
 {[1]} {[SouthWest]} {[winter storm]}
 {[17]} {[West]} {[winter storm]}

Convert the cell array into a table and unstack the 'Count' and 'Region' variables.
Use fillmissing on the in-memory table to replace NaN values with zeros.

tmp = cell2table(C, 'VariableNames', {'Count', 'Region', 'Cause'});
RegionCauses = unstack(tmp, 'Count', 'Region');
RegionCauses = fillmissing(RegionCauses,'constant',{'',0,0,0,0,0})

RegionCauses=10x6 table
 Cause MidWest NorthEast SouthEast SouthWest West
 ________________ _______ _________ _________ _________ ____

 attack 4 75 6 0 44
 earthquake 0 1 0 0 1
 energy emergency 11 11 39 5 19
 equipment fault 6 13 28 1 50
 fire 0 4 2 0 10
 severe storm 17 54 86 4 13
 thunder storm 22 37 39 6 4
 unknown 4 4 2 0 1
 wind 12 19 11 3 15
 winter storm 9 30 23 1 17

See Also
findgroups | splitapply | tall

More About
• “Grouping Variables To Split Data”
• “Split Data into Groups and Calculate Statistics”
• “Split Table Data Variables and Apply Functions”

11 Large Data

11-206

Extend Tall Arrays with Other Products
Products Used: Statistics and Machine Learning Toolbox, Database Toolbox, Parallel
Computing Toolbox, MATLAB Distributed Computing Server, MATLAB Compiler

Several toolboxes enhance the capabilities of tall arrays. These enhancements include
writing machine learning algorithms, integrating with big data systems, and deploying
standalone apps.

Statistics and Machine Learning

Statistics and Machine Learning Toolbox enables you to perform advanced statistical
calculations on tall arrays. Capabilities include:

• K-means clustering
• Linear regression fitting
• Grouped statistics
• Classification

See “Analysis of Big Data with Tall Arrays” (Statistics and Machine Learning Toolbox)
for more information.

Control Where Your Code Runs

When you execute calculations on tall arrays, the default execution environment uses
either the local MATLAB session, or a local parallel pool if you have Parallel Computing
Toolbox. Use the mapreducer function to change the execution environment of tall
arrays when using Parallel Computing Toolbox, MATLAB Distributed Computing
Server, or MATLAB Compiler:

• Parallel Computing Toolbox — Run calculations in parallel using local workers to
speed up large tall array calculations. See “Use Tall Arrays on a Parallel Pool”
(Parallel Computing Toolbox) for more information.

• MATLAB Distributed Computing Server — Run tall array calculations on a cluster,
including Apache Spark™ enabled Hadoop clusters. This can significantly reduce the
execution time of very large calculations. See “Use Tall Arrays on a Spark Enabled
Hadoop Cluster” (Parallel Computing Toolbox) for more information.

 Extend Tall Arrays with Other Products

11-207

• MATLAB Compiler — Deploy MATLAB applications containing tall arrays as
standalone apps on Apache Spark. See “Spark Applications” (MATLAB Compiler) for
more information.

One of the benefits of developing your algorithms with tall arrays is that you only need to
write the code once. You can develop your code locally, then use mapreducer to scale up
and take advantage of the capabilities offered by Parallel Computing Toolbox, MATLAB
Distributed Computing Server, or MATLAB Compiler, without needing to rewrite your
algorithm.

Note Each tall array is bound to a single execution environment when it is constructed
using tall(ds). If that execution environment is later modified or deleted, then the tall
array becomes invalid.

For this reason, each time you change the execution environment you must reconstruct
the tall array.

Work with Databases

Database Toolbox enables you to create a tall table from a DatabaseDatastore that is
backed by data in a database. For more information, see “Analyze Large Data in
Database Using Tall Arrays” (Database Toolbox).

Note DatabaseDatastore has these limitations:

• DatabaseDatastore must use the local MATLAB session as the execution
environment. Set this environment using the command mapreducer(0).

• Standalone applications containing tall arrays that use DatabaseDatastore cannot
be deployed against Apache Spark using MATLAB Compiler.

See Also
gcmr | mapreducer | tall

11 Large Data

11-208

More About
• “Tall Arrays” on page 11-141

 See Also

11-209

TCP/IP Support in MATLAB

• “TCP/IP Communication Overview” on page 12-2
• “Create a TCP/IP Connection” on page 12-3
• “Configure Properties for TCP/IP Communication” on page 12-6
• “Write and Read Data over TCP/IP Interface” on page 12-9

12

TCP/IP Communication Overview
Transmission Control Protocol (TCP) is a transport protocol layered on top of the
Internet Protocol (IP) and is one of the most used networking protocols. The MATLAB
TCP/IP client support uses raw socket communication and lets you connect to remote
hosts from MATLAB for reading and writing data. For example, you could use it to
acquire data from a remote weather station, and plot the data.

• Connection based protocol — The two ends of the communication link must be
connected at all times during the communication.

• Streaming protocol — TCP/IP has a long stream of data that is transmitted from
one end of the connection to the other end, and another long stream of data flowing in
the opposite direction. The TCP/IP stack at one end is responsible for breaking the
stream of data into packets and sending those packets, while the stack at the other
end is responsible for reassembling the packets into a data stream using information
in the packet headers.

• Reliable protocol — The packets sent by TCP/IP contain a unique sequence
number. The starting sequence number is communicated to the other side at the
beginning of communication. The receiver acknowledges each packet, and the
acknowledgment contains the sequence number so that the sender knows which
packet was acknowledged. This method implies that any packets lost on the way can
be retransmitted because the sender would know that packets did not reach their
destination because it had not received an acknowledgment. Also, packets that arrive
out of sequence can be reassembled in the proper order by the receiver.

Timeouts can be established because the sender knows (from the first few packets)
how long it takes on average for a packet to be sent and its acknowledgment received.

You can create a TCP/IP connection to a server or hardware and perform read/write
operations. Use the tcpclient function to create the connection, and the write and
read functions for synchronously reading and writing data.

See “Create a TCP/IP Connection” on page 12-3 to get started, and “Write and Read
Data over TCP/IP Interface” on page 12-9 for examples of reading and writing data.

12 TCP/IP Support in MATLAB

12-2

Create a TCP/IP Connection
The MATLAB TCP/IP client support lets you connect to remote hosts or hardware from
MATLAB for reading and writing data. The typical workflow is:

• Create a TCP/IP connection to a server or hardware.
• Configure the connection if necessary.
• Perform read and write operations.
• Clear and close the connection.

To communicate over the TCP/IP interface, you first create a TCP/IP object using the
tcpclient function. The syntax is:

<objname> = tcpclient(Address, Port)

The address can be either a remote host name or a remote IP address. In both cases, the
Port must be a positive integer between 1 and 65535.

Create Object Using Host Name

This example creates the TCP/IP object t using the host address shown and port of 80.

t = tcpclient('www.mathworks.com', 80)

t =

 tcpclient with properties:

 Address: 'www.mathworks.com'
 Port: 80
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: Inf

Note When connecting using a host name, such as a specified web address or
'localhost', the IP address will be resolved according to the configuration of your
network interface. This may result in an IPv4 address or an IPv6 address. If your TCP/IP
server expects the incoming connections to be of a certain type of address, for example
IPv4 address only, you may be required to use the explicit IP address, instead of the host
name, when creating the client.

 Create a TCP/IP Connection

12-3

Create Object Using IP Address

This example creates the TCP/IP object tusing the IP address shown and port of 4012.

t = tcpclient('172.28.154.231', 4012)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: Inf

Set the Timeout Property

You can create the object using a name-value pair to set the Timeout value. The
Timeout property specifies the waiting time to complete read and write operations in
seconds, and the default is 10. You can change the value either during object creation or
after you create the object.

This example creates a TCP/IP object, but increases the Timeout to 20 seconds.

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 20
 BytesAvailable: 0
 ConnectTimeout: Inf

The output reflects the Timeout property change.

Set the Connect Timeout Property

You can create the object using a name-value pair to set the ConnectTimeout value.
The ConnectTimeout property specifies the maximum time in seconds to wait for a
connection request to the specified remote host to succeed or fail. The value must be

12 TCP/IP Support in MATLAB

12-4

greater than or equal to 1. If not specified, the default value of ConnectionTimeout is
Inf. You can change the value only during object creation.

This example creates a TCP/IP object, but specifies the ConnectTimeout as 10 seconds.

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: 10

The output reflects the ConnectTimeout property change.

Note If an invalid address or port is specified or the connection to the server cannot be
established, the object is not created.

 Create a TCP/IP Connection

12-5

Configure Properties for TCP/IP Communication
The tcpclient object has the following properties.
Property Description
Address Remote host name or IP address for connection. Specify address

as the first argument when you create the tcpclient object. In
this example Address is '172.28.154.231'.

t = tcpclient('172.28.154.231', 4012)
Port Remote host port for connection. Specify port number as the

second argument when you create the tcpclient object. The
Port must be a positive integer between 1 and 65535. In this
example Port is 4012.

t = tcpclient('www.mathworks.com', 4012)
BytesAvailable Read-only property that returns the number of bytes available in

the input buffer.
Timeout Waiting time in seconds to complete read and write operations,

specified as a positive value of type double. The default is 10.
You can change the value either during object creation, or after
you create the object.

ConnectTimeout Maximum time in seconds to wait for a connection request to the
specified remote host to succeed or fail, specified as a positive
value of type double. If not specified, the default value is Inf.
You can change the value only during object creation.

Setting the Timeout

The default value for Timeout is 10 seconds. You can change the value either during
object creation, or after you create the object.

You can optionally create the tcpclient object using a name-value pair to set the
Timeout value.

This example creates the TCP/IP object and increases the Timeout to 20 seconds.

12 TCP/IP Support in MATLAB

12-6

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 20
 BytesAvailable: 0
 ConnectTimeout: Inf

The output reflects the Timeout property change from the default of 10 seconds to 20
seconds.

You can also change it anytime by setting the property value using this syntax.

<object_name>.<property_name> = <property_value>

This example using the same object named t increases the Timeout to 30 seconds.

t.Timeout = 30

Setting the Connect Timeout

You can create the tcpclient object using a name-value pair to set the
ConnectTimeout value. The ConnectTimeout property specifies the maximum time in
seconds to wait for a connection request to the specified remote host to succeed or fail.
The value must be greater than or equal to 1. If not specified, the default value of
ConnectionTimeout is Inf. You can change the value only during object creation.

This example creates a TCP/IP object, but changes the ConnectTimeout to 10 seconds.

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 4012
 Timeout: 10
 BytesAvailable: 0
 ConnectTimeout: 10

 Configure Properties for TCP/IP Communication

12-7

The output reflects the ConnectTimeout property change.

12 TCP/IP Support in MATLAB

12-8

Write and Read Data over TCP/IP Interface
In this section...
“Write Data” on page 12-9
“Read Data” on page 12-9
“Acquire Data from a Weather Station Server” on page 12-10
“Read and Write uint8 Data” on page 12-11

Write Data
The write function synchronously writes data to the remote host connected to the
tcpclient object. First specify the data, then write the data. The function waits until
the specified number of values is written to the remote host.

In this example, a tcpclient object t already exists.

% Create a variable called data
data = 1:10;

% Write the data to the object t
write(t, data)

Note For any read or write operation, the data type is converted to uint8 for the data
transfer. It is then converted back to whatever data type you set if you specified another
data type.

Read Data
The read function synchronously reads data from the remote host connected to the
tcpclient object and returns the data. There are three read options:

• Read all bytes available (no arguments)
• Optionally specify the number of bytes to read
• Optionally specify the data type

If you do not specify a size, the default read uses the BytesAvailable property value,
which is equal to the numbers of bytes available in the input buffer.

 Write and Read Data over TCP/IP Interface

12-9

In these examples, a tcpclient object t already exists.

% Read all bytes available.
read(t)

% Specify the number of bytes to read, 5 in this case.
read(t, 5)

% Specify the number of bytes to read, 10, and the data type, double.
read(t, 10, 'double')

Note For any read or write operation, the data type is converted to uint8 for the data
transfer. It is then converted back to whatever data type you set if you specified another
data type.

Acquire Data from a Weather Station Server

One of the primary uses of TCP/IP communication is to acquire data from a server. This
example shows how to acquire and plot data from a remote weather station.

Note The IP address in this example is not a working IP address. The example shows
how to connect to a remote server. You should substitute the address shown here with
the IP address or host name of a server you want to communicate with.

1 Create the tcpclient object using the Address shown here and Port of 1045.

t = tcpclient('172.28.154.231', 1045)

t =

 tcpclient with properties:

 Address: '172.28.154.231'
 Port: 1045
 Timeout: 10
 BytesAvailable: 0

See the note above step 1 about using a valid address.

12 TCP/IP Support in MATLAB

12-10

2 Acquire data using the read function. Specify the number of bytes to read as 30, for
10 samples from 3 sensors (temperature, pressure, and humidity). Specify the data
type as double.

data = read(t, 30, 'double');
3 Reshape the 1x30 data into 10x3 data to show one column each for temperature,

pressure, and humidity.

data = reshape(data, [3, 10]);
4 Plot the temperature.

subplot(311);
plot(data(:, 1));

5 Plot the pressure.

subplot(312);
plot(data(:, 2));

6 Plot the humidity.

subplot(313);
plot(data(:, 3));

7 Close the connection between the TCP/IP client object and the remote host by
clearing the object.

clear t

Read and Write uint8 Data

This example shows how to read and write uint8 data from an echo server.

1 Create the tcpclient object using a local host at Port 7.

t = tcpclient('localhost', 7)

t =

 tcpclient with properties:

 Address: 'localhost'
 Port: 7
 Timeout: 10
 BytesAvailable: 0

 Write and Read Data over TCP/IP Interface

12-11

2 Assign 10 bytes of uint8 data to the variable data.

data = uint8(1:10)

data =

 1 2 3 4 5 6 7 8 9 10
3 Check the data.

whos data

Name Size Bytes Class Attributes

data 1x10 10 uint8
4 Write the data to the echoserver.

write(t, data)
5 Check that the data was written using the BytesAvailable property.

t.BytesAvailable

ans =

 10
6 Read the data from the server.

read(t)

ans =

 1 2 3 4 5 6 7 8 9 10
7 Close the connection by clearing the object.

clear t

12 TCP/IP Support in MATLAB

12-12

